⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ikeyvalsort.c

📁 Handles Hexahedral, Tetrahedral, Quadrilateral, and Triangle meshes. Lagrangian, Hierarchic, and Mon
💻 C
字号:
#include <parmetislib.h>/* Byte-wise swap two items of size SIZE. */#define QSSWAP(a, b, stmp) do { stmp = (a); (a) = (b); (b) = stmp; } while (0)/* Discontinue quicksort algorithm when partition gets below this size.   This particular magic number was chosen to work best on a Sun 4/260. */#define MAX_THRESH 20/* Stack node declarations used to store unfulfilled partition obligations. */typedef struct {  KeyValueType *lo;  KeyValueType *hi;} stack_node;/* The next 4 #defines implement a very fast in-line stack abstraction. */#define STACK_SIZE	(8 * sizeof(unsigned long int))#define PUSH(low, high)	((void) ((top->lo = (low)), (top->hi = (high)), ++top))#define	POP(low, high)	((void) (--top, (low = top->lo), (high = top->hi)))#define	STACK_NOT_EMPTY	(stack < top)void ikeyvalsort(int total_elems, KeyValueType *pbase){  KeyValueType pivot, stmp;  if (total_elems == 0)    /* Avoid lossage with unsigned arithmetic below.  */    return;  if (total_elems > MAX_THRESH) {    KeyValueType *lo = pbase;    KeyValueType *hi = &lo[total_elems - 1];    stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */    stack_node *top = stack + 1;    while (STACK_NOT_EMPTY) {      KeyValueType *left_ptr;      KeyValueType *right_ptr;      KeyValueType *mid = lo + ((hi - lo) >> 1);      if (mid->key < lo->key || (mid->key == lo->key && mid->val < lo->val))         QSSWAP(*mid, *lo, stmp);      if (hi->key < mid->key || (hi->key == mid->key && hi->val < mid->val))        QSSWAP(*mid, *hi, stmp);      else        goto jump_over;      if (mid->key < lo->key || (mid->key == lo->key && mid->val < lo->val))        QSSWAP(*mid, *lo, stmp);jump_over:;      pivot = *mid;      left_ptr  = lo + 1;      right_ptr = hi - 1;      /* Here's the famous ``collapse the walls'' section of quicksort.	 Gotta like those tight inner loops!  They are the main reason	 that this algorithm runs much faster than others. */      do {	while (left_ptr->key < pivot.key || (left_ptr->key == pivot.key && left_ptr->val < pivot.val))	  left_ptr++;	while (pivot.key < right_ptr->key || (pivot.key == right_ptr->key && pivot.val < right_ptr->val))	  right_ptr--;	if (left_ptr < right_ptr) {	  QSSWAP (*left_ptr, *right_ptr, stmp);	  left_ptr++;	  right_ptr--;	}	else if (left_ptr == right_ptr) {	  left_ptr++;	  right_ptr--;	  break;	}      } while (left_ptr <= right_ptr);      /* Set up pointers for next iteration.  First determine whether         left and right partitions are below the threshold size.  If so,         ignore one or both.  Otherwise, push the larger partition's         bounds on the stack and continue sorting the smaller one. */      if ((size_t) (right_ptr - lo) <= MAX_THRESH) {        if ((size_t) (hi - left_ptr) <= MAX_THRESH)	  /* Ignore both small partitions. */          POP (lo, hi);        else	  /* Ignore small left partition. */          lo = left_ptr;      }      else if ((size_t) (hi - left_ptr) <= MAX_THRESH)	/* Ignore small right partition. */        hi = right_ptr;      else if ((right_ptr - lo) > (hi - left_ptr)) {       /* Push larger left partition indices. */       PUSH (lo, right_ptr);       lo = left_ptr;      }      else {	/* Push larger right partition indices. */        PUSH (left_ptr, hi);        hi = right_ptr;      }    }  }  /* Once the BASE_PTR array is partially sorted by quicksort the rest     is completely sorted using insertion sort, since this is efficient     for partitions below MAX_THRESH size. BASE_PTR points to the beginning     of the array to sort, and END_PTR points at the very last element in     the array (*not* one beyond it!). */  {    KeyValueType *end_ptr = &pbase[total_elems - 1];    KeyValueType *tmp_ptr = pbase;    KeyValueType *thresh = (end_ptr < pbase + MAX_THRESH ? end_ptr : pbase + MAX_THRESH);    register KeyValueType *run_ptr;    /* Find smallest element in first threshold and place it at the       array's beginning.  This is the smallest array element,       and the operation speeds up insertion sort's inner loop. */    for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr++)      if (run_ptr->key < tmp_ptr->key || (run_ptr->key == tmp_ptr->key && run_ptr->val < tmp_ptr->val))        tmp_ptr = run_ptr;    if (tmp_ptr != pbase)      QSSWAP(*tmp_ptr, *pbase, stmp);    /* Insertion sort, running from left-hand-side up to right-hand-side.  */    run_ptr = pbase + 1;    while (++run_ptr <= end_ptr) {      tmp_ptr = run_ptr - 1;      while (run_ptr->key < tmp_ptr->key || (run_ptr->key == tmp_ptr->key && run_ptr->val < tmp_ptr->val))        tmp_ptr--;      tmp_ptr++;      if (tmp_ptr != run_ptr) {        KeyValueType elmnt = *run_ptr;        KeyValueType *mptr;        for (mptr=run_ptr; mptr>tmp_ptr; mptr--)          *mptr = *(mptr-1);        *mptr = elmnt;      }    }  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -