📄 abaloneexample.m
字号:
% example
clear
load abalone
load abaloneindex;
% initialize the free parameters
trainnum = 3000;
param.kernel = 'rbf';
param.kernelparam = 0.5;
param.epsilon = 0.1;
param.delta = 0.11;
param.lamda = (param.delta - param.epsilon)/10;
type = 'normal';
for i = 1:10
% normalize the data
index1 = abaloneindex(i,1:trainnum);
index2 = abaloneindex(i,trainnum+1:end);
[samples,A1,B1] = scaletrain(abalonesamples(index1,:));
[labels,A2,B2] = scaletrain(abalonelabels(index1,:));
mul = 1/A2;
testsamples = scaletest(abalonesamples(index2,:),A1,B1);
testlabels = scaletest(abalonelabels(index2,:),A2,B2);
% train support vector regression with recursive finite Newton algorithm
[alpha,b,sv] = ihlf_svr_rfntrain(samples,labels,param,type);
trainresult = ihlf_svr_rfntest(samples,samples,alpha,b,sv,param);
testresult = ihlf_svr_rfntest(testsamples,samples,alpha,b,sv,param);
lensv(i,1) = length(sv);
% print the training and test error
trainerror(i,1) = mean((mul*(trainresult - labels)).^2);
testerror(i,1) = mean((mul*(testresult - testlabels)).^2);
fprintf('\n');
fprintf('Test error = %f\n',mean(testerror));
fprintf('Train error = %f\n',mean(trainerror));
fprintf('Support vector = %f\n',mean(lensv));
fprintf('\n');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -