📄 anova.m
字号:
function [result, K] = anova(s,t,p)%ANOVA% -ANOVA decomposition kernel using a dynamic alignment algorithm for two vectors% of equal length, s and t, and character length, p.% -Note that s and t are both row vectors of the same length.%% -The following algorithm is used:% K[0](x,y) = 1 for all x,y% K[p](s,'empty string') = 0 for all p > 0, all s% K[p](s[1:m],t[1:m]) = K[p](s[1:m-1],t[1:m-1]) + (s[m]*t[m]) * K[p-1](s[1:m-1],t[1:m-1])%% -Simply prompting the function will return the value K(s,t), however% using the function as [result,K] = K(s,t) will also return the matrix K[p].%% -Example: anova([5 4],[3 2], 2) returns a value of 120.% (Note that anova([5 4],[3 2],2)=anova([3 2],[5 4],2) since K(s,t,p) = K(t,s,p) ).% -Example: anova([5 4],[3 2], 1) returns a value of 23.% %%%USAGE: scalar = anova([vector 1],[vector 2], p); (where p is the length of the subsequence)%% [scalar, matrix] = anova([vector 1],[vector 2], p);%%%For more information, visit Http://www.kernel-methods.net/%Written and tested in Matlab 6.0, Release 12.%Copyright 2003, Manju M. Pai 4/2003%manju@kernel-methods.net%------------------------------------------------------------------------------------------%Obtain lengths of vectors[num_rows_s, n] = size(s);[num_rows_t, m] = size(t);%Error checking statements: %Both vectors need to have the same number of components if n ~= m error('Error: s and t vectors need to be of the same dimension.'); end; %Make sure input vectors are horizontal. if (num_rows_s ~= 1 | num_rows_t ~= 1) error('Error: s and t must be horizontal vectors.'); end; %Make sure input vectors consist only of numbers if (ischar(s) | ischar(t) ) error('Error: vectors must consist only of numbers.'); end; %If p is less than zero, program should quit due to faulty variable input. if p <= 0 error('Error: p needs to be greater than 0.'); end;%End of error checking%Initially set every matrix index to -1 to show value has not yet been foundans = repmat(-1, [n, m, p]);%Fill in the matrix using the function anova_kernel(s,t,K,p)for h=1:p for i=1:n for j=1:m ans(i,j,h) = anova_kernel(s(1:i), t(1:j), ans, h); end; end;end;result = ans(n,m,p);K = ans(:,:,p);%------------------------------------------------------------------------------------------function ans = anova_kernel(sa, ta, K, p)%This function is called by anova(s,t,p).%Type 'help anova' for a description of the program.%%------------------------------------------------------------------------------------------%Obtain lengths of both stringsn = length(sa);m = length(ta);%truncate last character of strings = sa(1:n-1);t = ta(1:m-1); %Start algorithm: % 1) Split main algorithm into two parts: % a) K[p](s,t) if (length(s) == 0) | (length(t) == 0) %This is a base case where 0 is returned if either vector has 0 components ans = 0; elseif( K( length(s), length(t) , p) == -1 ) % Value has not yet been calculated ans = anova_kernel(s,t,K,p); else % Value has already been calculated ans = K( length(s), length(t), p); end; % b) K[p-1](s,t) * k(sa,ta) %First calculate k(sa,ta). little_k = sa(n) * ta(m); %Now calculate K[p-1](s,t) if (p-1) == 0 %This is a base case where 1 should always be returned if p = 0; result = 1; elseif (length(s) == 0) | (length(t) == 0) %This is a base case where 0 is returned if either vector has 0 components result = 0; elseif( K( length(s) , length(t) , p-1) == -1) % Value has not yet been calculated result = anova_kernel( s , t, K, p-1 ); else % Value has already been calculated. result = K( length(s), length(t), p-1 ); end; ans = ans + (little_k * result); return% End of algorithm
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -