⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 separator.c

📁 多层权核k均值算法
💻 C
字号:
/* * Copyright 1997, Regents of the University of Minnesota * * separator.c * * This file contains code for separator extraction * * Started 8/1/97 * George * * $Id: separator.c,v 1.1 1998/11/27 17:59:30 karypis Exp $ * */#include <metis.h>/************************************************************************** This function takes a bisection and constructs a minimum weight vertex * separator out of it. It uses the node-based separator refinement for it.**************************************************************************/void ConstructSeparator(CtrlType *ctrl, GraphType *graph, float ubfactor){  int i, j, k, nvtxs, nbnd;  idxtype *xadj, *where, *bndind;  nvtxs = graph->nvtxs;  xadj = graph->xadj;  nbnd = graph->nbnd;  bndind = graph->bndind;  where = idxcopy(nvtxs, graph->where, idxwspacemalloc(ctrl, nvtxs));  /* Put the nodes in the boundary into the separator */  for (i=0; i<nbnd; i++) {    j = bndind[i];    if (xadj[j+1]-xadj[j] > 0)  /* Ignore islands */      where[j] = 2;  }  GKfree((void**) &graph->rdata, LTERM);  Allocate2WayNodePartitionMemory(ctrl, graph);  idxcopy(nvtxs, where, graph->where);  idxwspacefree(ctrl, nvtxs);  ASSERT(IsSeparable(graph));  Compute2WayNodePartitionParams(ctrl, graph);  ASSERT(CheckNodePartitionParams(graph));  FM_2WayNodeRefine(ctrl, graph, ubfactor, 8);   ASSERT(IsSeparable(graph));}/************************************************************************** This function takes a bisection and constructs a minimum weight vertex * separator out of it. It uses an unweighted minimum-cover algorithm* followed by node-based separator refinement.**************************************************************************/void ConstructMinCoverSeparator0(CtrlType *ctrl, GraphType *graph, float ubfactor){  int i, ii, j, jj, k, l, nvtxs, nbnd, bnvtxs[3], bnedges[2], csize;  idxtype *xadj, *adjncy, *bxadj, *badjncy;  idxtype *where, *bndind, *bndptr, *vmap, *ivmap, *cover;  nvtxs = graph->nvtxs;  xadj = graph->xadj;  adjncy = graph->adjncy;  nbnd = graph->nbnd;  bndind = graph->bndind;  bndptr = graph->bndptr;  where = graph->where;  vmap = idxwspacemalloc(ctrl, nvtxs);  ivmap = idxwspacemalloc(ctrl, nbnd);  cover = idxwspacemalloc(ctrl, nbnd);  if (nbnd > 0) {    /* Go through the boundary and determine the sizes of the bipartite graph */    bnvtxs[0] = bnvtxs[1] = bnedges[0] = bnedges[1] = 0;    for (i=0; i<nbnd; i++) {      j = bndind[i];      k = where[j];      if (xadj[j+1]-xadj[j] > 0) {        bnvtxs[k]++;        bnedges[k] += xadj[j+1]-xadj[j];      }    }    bnvtxs[2] = bnvtxs[0]+bnvtxs[1];    bnvtxs[1] = bnvtxs[0];    bnvtxs[0] = 0;    bxadj = idxmalloc(bnvtxs[2]+1, "ConstructMinCoverSeparator: bxadj");    badjncy = idxmalloc(bnedges[0]+bnedges[1]+1, "ConstructMinCoverSeparator: badjncy");    /* Construct the ivmap and vmap */    ASSERT(idxset(nvtxs, -1, vmap) == vmap);    for (i=0; i<nbnd; i++) {      j = bndind[i];      k = where[j];      if (xadj[j+1]-xadj[j] > 0) {        vmap[j] = bnvtxs[k];        ivmap[bnvtxs[k]++] = j;      }    }    /* OK, go through and put the vertices of each part starting from 0 */    bnvtxs[1] = bnvtxs[0];    bnvtxs[0] = 0;    bxadj[0] = l = 0;    for (k=0; k<2; k++) {      for (ii=0; ii<nbnd; ii++) {        i = bndind[ii];        if (where[i] == k && xadj[i] < xadj[i+1]) {          for (j=xadj[i]; j<xadj[i+1]; j++) {            jj = adjncy[j];            if (where[jj] != k) {              ASSERT(bndptr[jj] != -1);               ASSERTP(vmap[jj] != -1, ("%d %d %d\n", jj, vmap[jj], graph->bndptr[jj]));              badjncy[l++] = vmap[jj];            }          }          bxadj[++bnvtxs[k]] = l;        }      }    }    ASSERT(l <= bnedges[0]+bnedges[1]);    MinCover(bxadj, badjncy, bnvtxs[0], bnvtxs[1], cover, &csize);    IFSET(ctrl->dbglvl, DBG_SEPINFO,      printf("Nvtxs: %6d, [%5d %5d], Cut: %6d, SS: [%6d %6d], Cover: %6d\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, bnvtxs[0], bnvtxs[1]-bnvtxs[0], csize));    for (i=0; i<csize; i++) {      j = ivmap[cover[i]];      where[j] = 2;    }    GKfree((void**) &bxadj, (void**) &badjncy, LTERM);    for (i=0; i<nbnd; i++)      bndptr[bndind[i]] = -1;    for (nbnd=i=0; i<nvtxs; i++) {      if (where[i] == 2) {        bndind[nbnd] = i;        bndptr[i] = nbnd++;      }    }  }  else {    IFSET(ctrl->dbglvl, DBG_SEPINFO,      printf("Nvtxs: %6d, [%5d %5d], Cut: %6d, SS: [%6d %6d], Cover: %6d\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, 0, 0, 0));  }  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, graph->nbnd);  idxwspacefree(ctrl, graph->nbnd);  graph->nbnd = nbnd;  ASSERT(IsSeparable(graph));}/************************************************************************** This function takes a bisection and constructs a minimum weight vertex * separator out of it. It uses an unweighted minimum-cover algorithm* followed by node-based separator refinement.**************************************************************************/void ConstructMinCoverSeparator(CtrlType *ctrl, GraphType *graph, float ubfactor){  int i, ii, j, jj, k, l, nvtxs, nbnd, bnvtxs[3], bnedges[2], csize;  idxtype *xadj, *adjncy, *bxadj, *badjncy;  idxtype *where, *bndind, *bndptr, *vmap, *ivmap, *cover;  nvtxs = graph->nvtxs;  xadj = graph->xadj;  adjncy = graph->adjncy;  nbnd = graph->nbnd;  bndind = graph->bndind;  bndptr = graph->bndptr;  where = graph->where;  vmap = idxwspacemalloc(ctrl, nvtxs);  ivmap = idxwspacemalloc(ctrl, nbnd);  cover = idxwspacemalloc(ctrl, nbnd);  if (nbnd > 0) {    /* Go through the boundary and determine the sizes of the bipartite graph */    bnvtxs[0] = bnvtxs[1] = bnedges[0] = bnedges[1] = 0;    for (i=0; i<nbnd; i++) {      j = bndind[i];      k = where[j];      if (xadj[j+1]-xadj[j] > 0) {        bnvtxs[k]++;        bnedges[k] += xadj[j+1]-xadj[j];      }    }    bnvtxs[2] = bnvtxs[0]+bnvtxs[1];    bnvtxs[1] = bnvtxs[0];    bnvtxs[0] = 0;    bxadj = idxmalloc(bnvtxs[2]+1, "ConstructMinCoverSeparator: bxadj");    badjncy = idxmalloc(bnedges[0]+bnedges[1]+1, "ConstructMinCoverSeparator: badjncy");    /* Construct the ivmap and vmap */    ASSERT(idxset(nvtxs, -1, vmap) == vmap);    for (i=0; i<nbnd; i++) {      j = bndind[i];      k = where[j];      if (xadj[j+1]-xadj[j] > 0) {        vmap[j] = bnvtxs[k];        ivmap[bnvtxs[k]++] = j;      }    }    /* OK, go through and put the vertices of each part starting from 0 */    bnvtxs[1] = bnvtxs[0];    bnvtxs[0] = 0;    bxadj[0] = l = 0;    for (k=0; k<2; k++) {      for (ii=0; ii<nbnd; ii++) {        i = bndind[ii];        if (where[i] == k && xadj[i] < xadj[i+1]) {          for (j=xadj[i]; j<xadj[i+1]; j++) {            jj = adjncy[j];            if (where[jj] != k) {              ASSERT(bndptr[jj] != -1);               ASSERTP(vmap[jj] != -1, ("%d %d %d\n", jj, vmap[jj], graph->bndptr[jj]));              badjncy[l++] = vmap[jj];            }          }          bxadj[++bnvtxs[k]] = l;        }      }    }    ASSERT(l <= bnedges[0]+bnedges[1]);    MinCover(bxadj, badjncy, bnvtxs[0], bnvtxs[1], cover, &csize);    IFSET(ctrl->dbglvl, DBG_SEPINFO,      printf("Nvtxs: %6d, [%5d %5d], Cut: %6d, SS: [%6d %6d], Cover: %6d\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, bnvtxs[0], bnvtxs[1]-bnvtxs[0], csize));    for (i=0; i<csize; i++) {      j = ivmap[cover[i]];      where[j] = 2;    }    GKfree((void**) &bxadj, (void**) &badjncy, LTERM);  }  else {    IFSET(ctrl->dbglvl, DBG_SEPINFO,      printf("Nvtxs: %6d, [%5d %5d], Cut: %6d, SS: [%6d %6d], Cover: %6d\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, 0, 0, 0));  }  /* Prepare to refine the vertex separator */  idxcopy(nvtxs, graph->where, vmap);  GKfree((void**) &graph->rdata, LTERM);  Allocate2WayNodePartitionMemory(ctrl, graph);  idxcopy(nvtxs, vmap, graph->where);  idxwspacefree(ctrl, nvtxs+2*graph->nbnd);  Compute2WayNodePartitionParams(ctrl, graph);  ASSERT(CheckNodePartitionParams(graph));  FM_2WayNodeRefine_OneSided(ctrl, graph, ubfactor, 6);   ASSERT(IsSeparable(graph));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -