⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kwayrefine.c

📁 多层权核k均值算法
💻 C
字号:
/* * Copyright 1997, Regents of the University of Minnesota * * kwayrefine.c * * This file contains the driving routines for multilevel k-way refinement * * Started 7/28/97 * George * * $Id: kwayrefine.c,v 1.1 1998/11/27 17:59:17 karypis Exp $ */#include <metis.h>/************************************************************************** This function is the entry point of refinement**************************************************************************/void RefineKWay(CtrlType *ctrl, GraphType *orggraph, GraphType *graph, int nparts, float *tpwgts, float ubfactor){  int i, nlevels, mustfree=0;  GraphType *ptr;  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->UncoarsenTmr));  /* Compute the parameters of the coarsest graph */  ComputeKWayPartitionParams(ctrl, graph, nparts);  /* Take care any non-contiguity */  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->AuxTmr1));  if (ctrl->RType == RTYPE_KWAYRANDOM_MCONN) {    EliminateComponents(ctrl, graph, nparts, tpwgts, 1.25);    EliminateSubDomainEdges(ctrl, graph, nparts, tpwgts);    EliminateComponents(ctrl, graph, nparts, tpwgts, 1.25);  }  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->AuxTmr1));  /* Determine how many levels are there */  for (ptr=graph, nlevels=0; ptr!=orggraph; ptr=ptr->finer, nlevels++);   for (i=0; ;i++) {    /* PrintSubDomainGraph(graph, nparts, graph->where); */    if (ctrl->RType == RTYPE_KWAYRANDOM_MCONN && (i == nlevels/2 || i == nlevels/2+1))      EliminateSubDomainEdges(ctrl, graph, nparts, tpwgts);    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->RefTmr));    if (2*i >= nlevels && !IsBalanced(graph->pwgts, nparts, tpwgts, 1.04*ubfactor)) {      ComputeKWayBalanceBoundary(ctrl, graph, nparts);      if (ctrl->RType == RTYPE_KWAYRANDOM_MCONN)        Greedy_KWayEdgeBalanceMConn(ctrl, graph, nparts, tpwgts, ubfactor, 1);       else        Greedy_KWayEdgeBalance(ctrl, graph, nparts, tpwgts, ubfactor, 1);       ComputeKWayBoundary(ctrl, graph, nparts);    }    switch (ctrl->RType) {      case RTYPE_KWAYRANDOM:        Random_KWayEdgeRefine(ctrl, graph, nparts, tpwgts, ubfactor, 10, 1);         break;      case RTYPE_KWAYGREEDY:        Greedy_KWayEdgeRefine(ctrl, graph, nparts, tpwgts, ubfactor, 10);         break;      case RTYPE_KWAYRANDOM_MCONN:        Random_KWayEdgeRefineMConn(ctrl, graph, nparts, tpwgts, ubfactor, 10, 1);         break;    }    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->RefTmr));    if (graph == orggraph)      break;    GKfree((void**) &graph->gdata, LTERM);  /* Deallocate the graph related arrays */    graph = graph->finer;    IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->ProjectTmr));    if (graph->vwgt == NULL) {      graph->vwgt = idxsmalloc(graph->nvtxs, 1, "RefineKWay: graph->vwgt");      graph->adjwgt = idxsmalloc(graph->nedges, 1, "RefineKWay: graph->adjwgt");      mustfree = 1;    }    ProjectKWayPartition(ctrl, graph, nparts);    IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->ProjectTmr));  }  if (!IsBalanced(graph->pwgts, nparts, tpwgts, ubfactor)) {    ComputeKWayBalanceBoundary(ctrl, graph, nparts);    if (ctrl->RType == RTYPE_KWAYRANDOM_MCONN) {      Greedy_KWayEdgeBalanceMConn(ctrl, graph, nparts, tpwgts, ubfactor, 8);       Random_KWayEdgeRefineMConn(ctrl, graph, nparts, tpwgts, ubfactor, 10, 0);     }    else {      Greedy_KWayEdgeBalance(ctrl, graph, nparts, tpwgts, ubfactor, 8);       Random_KWayEdgeRefine(ctrl, graph, nparts, tpwgts, ubfactor, 10, 0);     }  }  /* Take care any trivial non-contiguity */  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->AuxTmr2));  EliminateComponents(ctrl, graph, nparts, tpwgts, ubfactor);  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->AuxTmr2));  if (mustfree)     GKfree((void**) &graph->vwgt, (void**) &graph->adjwgt, LTERM);  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->UncoarsenTmr));}/************************************************************************** This function allocates memory for k-way edge refinement**************************************************************************/void AllocateKWayPartitionMemory(CtrlType *ctrl, GraphType *graph, int nparts){  int nvtxs, pad64;  nvtxs = graph->nvtxs;  pad64 = (3*nvtxs+nparts)%2;  graph->rdata = idxmalloc(3*nvtxs+nparts+(sizeof(RInfoType)/sizeof(idxtype))*nvtxs+pad64, "AllocateKWayPartitionMemory: rdata");  graph->pwgts          = graph->rdata;  graph->where          = graph->rdata + nparts;  graph->bndptr         = graph->rdata + nvtxs + nparts;  graph->bndind         = graph->rdata + 2*nvtxs + nparts;  graph->rinfo          = (RInfoType *)(graph->rdata + 3*nvtxs+nparts + pad64);/*  if (ctrl->wspace.edegrees != NULL)    free(ctrl->wspace.edegrees);  ctrl->wspace.edegrees = (EDegreeType *)GKmalloc(graph->nedges*sizeof(EDegreeType), "AllocateKWayPartitionMemory: edegrees");*/}/************************************************************************** This function computes the initial id/ed **************************************************************************/void ComputeKWayPartitionParams(CtrlType *ctrl, GraphType *graph, int nparts){  int i, j, k, l, nvtxs, nbnd, mincut, me, other;  idxtype *xadj, *vwgt, *adjncy, *adjwgt, *pwgts, *where, *bndind, *bndptr;  RInfoType *rinfo, *myrinfo;  EDegreeType *myedegrees;  nvtxs = graph->nvtxs;  xadj = graph->xadj;  vwgt = graph->vwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  where = graph->where;  pwgts = idxset(nparts, 0, graph->pwgts);  bndind = graph->bndind;  bndptr = idxset(nvtxs, -1, graph->bndptr);  rinfo = graph->rinfo;  /*------------------------------------------------------------  / Compute now the id/ed degrees  /------------------------------------------------------------*/  ctrl->wspace.cdegree = 0;  nbnd = mincut = 0;  for (i=0; i<nvtxs; i++) {    me = where[i];    pwgts[me] += vwgt[i];    myrinfo = rinfo+i;    myrinfo->id = myrinfo->ed = myrinfo->ndegrees = 0;    myrinfo->edegrees = NULL;    for (j=xadj[i]; j<xadj[i+1]; j++) {      if (me != where[adjncy[j]])        myrinfo->ed += adjwgt[j];    }    myrinfo->id = graph->adjwgtsum[i] - myrinfo->ed;    if (myrinfo->ed > 0)       mincut += myrinfo->ed;    if (myrinfo->ed-myrinfo->id >= 0)      BNDInsert(nbnd, bndind, bndptr, i);    /* Time to compute the particular external degrees */    if (myrinfo->ed > 0) {       myedegrees = myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;      ctrl->wspace.cdegree += xadj[i+1]-xadj[i];      for (j=xadj[i]; j<xadj[i+1]; j++) {        other = where[adjncy[j]];        if (me != other) {          for (k=0; k<myrinfo->ndegrees; k++) {            if (myedegrees[k].pid == other) {              myedegrees[k].ed += adjwgt[j];              break;            }          }          if (k == myrinfo->ndegrees) {            myedegrees[myrinfo->ndegrees].pid = other;            myedegrees[myrinfo->ndegrees++].ed = adjwgt[j];          }        }      }      ASSERT(myrinfo->ndegrees <= xadj[i+1]-xadj[i]);    }  }  graph->mincut = mincut/2;  graph->nbnd = nbnd;}/************************************************************************** This function projects a partition, and at the same time computes the* parameters for refinement.**************************************************************************/void ProjectKWayPartition(CtrlType *ctrl, GraphType *graph, int nparts){  int i, j, k, nvtxs, nbnd, me, other, istart, iend, ndegrees;  idxtype *xadj, *adjncy, *adjwgt, *adjwgtsum;  idxtype *cmap, *where, *bndptr, *bndind;  idxtype *cwhere;  GraphType *cgraph;  RInfoType *crinfo, *rinfo, *myrinfo;  EDegreeType *myedegrees;  idxtype *htable;  cgraph = graph->coarser;  cwhere = cgraph->where;  crinfo = cgraph->rinfo;  nvtxs = graph->nvtxs;  cmap = graph->cmap;  xadj = graph->xadj;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  adjwgtsum = graph->adjwgtsum;  AllocateKWayPartitionMemory(ctrl, graph, nparts);  where = graph->where;  rinfo = graph->rinfo;  bndind = graph->bndind;  bndptr = idxset(nvtxs, -1, graph->bndptr);  /* Go through and project partition and compute id/ed for the nodes */  for (i=0; i<nvtxs; i++) {    k = cmap[i];    where[i] = cwhere[k];    cmap[i] = crinfo[k].ed;  /* For optimization */  }  htable = idxset(nparts, -1, idxwspacemalloc(ctrl, nparts));  ctrl->wspace.cdegree = 0;  for (nbnd=0, i=0; i<nvtxs; i++) {    me = where[i];    myrinfo = rinfo+i;    myrinfo->id = myrinfo->ed = myrinfo->ndegrees = 0;    myrinfo->edegrees = NULL;    myrinfo->id = adjwgtsum[i];    if (cmap[i] > 0) { /* If it is an interface node. Note cmap[i] = crinfo[cmap[i]].ed */      istart = xadj[i];      iend = xadj[i+1];      myedegrees = myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree;      ctrl->wspace.cdegree += iend-istart;      ndegrees = 0;      for (j=istart; j<iend; j++) {        other = where[adjncy[j]];        if (me != other) {          myrinfo->ed += adjwgt[j];          if ((k = htable[other]) == -1) {            htable[other] = ndegrees;            myedegrees[ndegrees].pid = other;            myedegrees[ndegrees++].ed = adjwgt[j];          }          else {            myedegrees[k].ed += adjwgt[j];          }        }      }      myrinfo->id -= myrinfo->ed;      /* Remove space for edegrees if it was interior */      if (myrinfo->ed == 0) {         myrinfo->edegrees = NULL;        ctrl->wspace.cdegree -= iend-istart;      }      else {        if (myrinfo->ed-myrinfo->id >= 0)           BNDInsert(nbnd, bndind, bndptr, i);         myrinfo->ndegrees = ndegrees;        for (j=0; j<ndegrees; j++)          htable[myedegrees[j].pid] = -1;      }    }  }  idxcopy(nparts, cgraph->pwgts, graph->pwgts);  graph->mincut = cgraph->mincut;  graph->nbnd = nbnd;  FreeGraph(graph->coarser);  graph->coarser = NULL;  idxwspacefree(ctrl, nparts);  ASSERT(CheckBnd2(graph));}/************************************************************************** This function checks if the partition weights are within the balance* contraints**************************************************************************/int IsBalanced(idxtype *pwgts, int nparts, float *tpwgts, float ubfactor){  int i, j, tvwgt;  tvwgt = idxsum(nparts, pwgts);  for (i=0; i<nparts; i++) {    if (pwgts[i] > tpwgts[i]*tvwgt*(ubfactor+0.005))      return 0;  }  return 1;}/************************************************************************** This function computes the boundary definition for balancing**************************************************************************/void ComputeKWayBoundary(CtrlType *ctrl, GraphType *graph, int nparts){  int i, nvtxs, nbnd;  idxtype *bndind, *bndptr;  nvtxs = graph->nvtxs;  bndind = graph->bndind;  bndptr = idxset(nvtxs, -1, graph->bndptr);  /*------------------------------------------------------------  / Compute the new boundary  /------------------------------------------------------------*/  nbnd = 0;  for (i=0; i<nvtxs; i++) {    if (graph->rinfo[i].ed-graph->rinfo[i].id >= 0)       BNDInsert(nbnd, bndind, bndptr, i);  }  graph->nbnd = nbnd;}/************************************************************************** This function computes the boundary definition for balancing**************************************************************************/void ComputeKWayBalanceBoundary(CtrlType *ctrl, GraphType *graph, int nparts){  int i, nvtxs, nbnd;  idxtype *bndind, *bndptr;  nvtxs = graph->nvtxs;  bndind = graph->bndind;  bndptr = idxset(nvtxs, -1, graph->bndptr);  /*------------------------------------------------------------  / Compute the new boundary  /------------------------------------------------------------*/  nbnd = 0;  for (i=0; i<nvtxs; i++) {    if (graph->rinfo[i].ed > 0)       BNDInsert(nbnd, bndind, bndptr, i);  }  graph->nbnd = nbnd;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -