📄 minitpart2.c
字号:
/* * Copyright 1997, Regents of the University of Minnesota * * minitpart2.c * * This file contains code that performs the initial partition of the * coarsest graph * * Started 7/23/97 * George * * $Id: minitpart2.c,v 1.1 1998/11/27 17:59:23 karypis Exp $ * */#include <metis.h>/************************************************************************** This function computes the initial bisection of the coarsest graph**************************************************************************/void MocInit2WayPartition2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec) { int dbglvl; dbglvl = ctrl->dbglvl; IFSET(ctrl->dbglvl, DBG_REFINE, ctrl->dbglvl -= DBG_REFINE); IFSET(ctrl->dbglvl, DBG_MOVEINFO, ctrl->dbglvl -= DBG_MOVEINFO); IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr)); switch (ctrl->IType) { case IPART_GGPKL: case IPART_RANDOM: MocGrowBisection2(ctrl, graph, tpwgts, ubvec); break; case 3: MocGrowBisectionNew2(ctrl, graph, tpwgts, ubvec); break; default: errexit("Unknown initial partition type: %d\n", ctrl->IType); } IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial Cut: %d\n", graph->mincut)); IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr)); ctrl->dbglvl = dbglvl;}/************************************************************************** This function takes a graph and produces a bisection by using a region* growing algorithm. The resulting partition is returned in* graph->where**************************************************************************/void MocGrowBisection2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec){ int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs; idxtype *bestwhere, *where; nvtxs = graph->nvtxs; MocAllocate2WayPartitionMemory(ctrl, graph); where = graph->where; bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere"); nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); bestcut = idxsum(graph->nedges, graph->adjwgt); for (; nbfs>0; nbfs--) { idxset(nvtxs, 1, where); where[RandomInRange(nvtxs)] = 0; MocCompute2WayPartitionParams(ctrl, graph); MocBalance2Way2(ctrl, graph, tpwgts, ubvec); MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); MocBalance2Way2(ctrl, graph, tpwgts, ubvec); MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); if (bestcut > graph->mincut) { bestcut = graph->mincut; idxcopy(nvtxs, where, bestwhere); if (bestcut == 0) break; } } graph->mincut = bestcut; idxcopy(nvtxs, bestwhere, where); GKfree((void **) &bestwhere, LTERM);}/************************************************************************** This function takes a graph and produces a bisection by using a region* growing algorithm. The resulting partition is returned in* graph->where**************************************************************************/void MocGrowBisectionNew2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec){ int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs; idxtype *bestwhere, *where; nvtxs = graph->nvtxs; MocAllocate2WayPartitionMemory(ctrl, graph); where = graph->where; bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere"); nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); bestcut = idxsum(graph->nedges, graph->adjwgt); for (; nbfs>0; nbfs--) { idxset(nvtxs, 1, where); where[RandomInRange(nvtxs)] = 0; MocCompute2WayPartitionParams(ctrl, graph); MocInit2WayBalance2(ctrl, graph, tpwgts, ubvec); MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); if (bestcut > graph->mincut) { bestcut = graph->mincut; idxcopy(nvtxs, where, bestwhere); if (bestcut == 0) break; } } graph->mincut = bestcut; idxcopy(nvtxs, bestwhere, where); GKfree((void **) &bestwhere, LTERM);}/************************************************************************** This function balances two partitions by moving the highest gain * (including negative gain) vertices to the other domain.* It is used only when tha unbalance is due to non contigous* subdomains. That is, the are no boundary vertices.* It moves vertices from the domain that is overweight to the one that * is underweight.**************************************************************************/void MocInit2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec){ int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp, imin; idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind; idxtype *moved, *perm, *qnum; float *nvwgt, *npwgts, minwgt; PQueueType parts[MAXNCON][2]; int higain, oldgain, mincut; nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; adjncy = graph->adjncy; nvwgt = graph->nvwgt; adjwgt = graph->adjwgt; where = graph->where; id = graph->id; ed = graph->ed; npwgts = graph->npwgts; bndptr = graph->bndptr; bndind = graph->bndind; moved = idxwspacemalloc(ctrl, nvtxs); perm = idxwspacemalloc(ctrl, nvtxs); qnum = idxwspacemalloc(ctrl, nvtxs); /* This is called for initial partitioning so we know from where to pick nodes */ from = 1; to = (from+1)%2; if (ctrl->dbglvl&DBG_REFINE) { printf("Parts: ["); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, ComputeLoadImbalance(ncon, 2, npwgts, tpwgts)); } for (i=0; i<ncon; i++) { PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1); PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1); } idxset(nvtxs, -1, moved); ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); ASSERT(CheckGraph(graph)); /* Compute the queues in which each vertex will be assigned to */ for (i=0; i<nvtxs; i++) qnum[i] = samax(ncon, nvwgt+i*ncon); /* Insert the nodes of the proper partition in the appropriate priority queue */ RandomPermute(nvtxs, perm, 1); for (ii=0; ii<nvtxs; ii++) { i = perm[ii]; if (where[i] == from) { if (ed[i] > 0) PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]); else PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]); } }/* for (i=0; i<ncon; i++) printf("Queue #%d has %d %d\n", i, parts[i][0].nnodes, parts[i][1].nnodes);*/ /* Determine the termination criterion */ imin = 0; for (i=1; i<ncon; i++) imin = (ubvec[i] < ubvec[imin] ? i : imin); minwgt = .5/ubvec[imin]; mincut = graph->mincut; nbnd = graph->nbnd; for (nswaps=0; nswaps<nvtxs; nswaps++) { /* Exit as soon as the minimum weight crossed over */ if (npwgts[to*ncon+imin] > minwgt) break; if ((cnum = SelectQueueOneWay2(ncon, npwgts+to*ncon, parts, ubvec)) == -1) break; if ((higain = PQueueGetMax(&parts[cnum][0])) == -1) higain = PQueueGetMax(&parts[cnum][1]); mincut -= (ed[higain]-id[higain]); saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1); saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1); where[higain] = to; moved[higain] = nswaps; if (ctrl->dbglvl&DBG_MOVEINFO) { printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts)); if (ed[higain] == 0 && id[higain] > 0) printf("\t Pulled from the interior!\n"); } /************************************************************** * Update the id[i]/ed[i] values of the affected nodes ***************************************************************/ SWAP(id[higain], ed[higain], tmp); if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) BNDDelete(nbnd, bndind, bndptr, higain); if (ed[higain] > 0 && bndptr[higain] == -1) BNDInsert(nbnd, bndind, bndptr, higain); for (j=xadj[higain]; j<xadj[higain+1]; j++) { k = adjncy[j]; oldgain = ed[k]-id[k]; kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]); INC_DEC(id[k], ed[k], kwgt); /* Update the queue position */ if (moved[k] == -1 && where[k] == from) { if (ed[k] > 0 && bndptr[k] == -1) { /* It moves in boundary */ PQueueDelete(&parts[qnum[k]][1], k, oldgain); PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]); } else { /* It must be in the boundary already */ if (bndptr[k] == -1) printf("What you thought was wrong!\n"); PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]); } } /* Update its boundary information */ if (ed[k] == 0 && bndptr[k] != -1) BNDDelete(nbnd, bndind, bndptr, k); else if (ed[k] > 0 && bndptr[k] == -1) BNDInsert(nbnd, bndind, bndptr, k); } ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut)); } if (ctrl->dbglvl&DBG_REFINE) { printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd); for (l=0; l<ncon; l++) printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]); printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts)); } graph->mincut = mincut; graph->nbnd = nbnd; for (i=0; i<ncon; i++) { PQueueFree(ctrl, &parts[i][0]); PQueueFree(ctrl, &parts[i][1]); } ASSERT(ComputeCut(graph, where) == graph->mincut); ASSERT(CheckBnd(graph)); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function selects the partition number and the queue from which* we will move vertices out**************************************************************************/ int SelectQueueOneWay2(int ncon, float *pto, PQueueType queues[MAXNCON][2], float *ubvec){ int i, cnum=-1, imax, maxgain; float max=0.0; float twgt[MAXNCON]; for (i=0; i<ncon; i++) { if (max < pto[i]) { imax = i; max = pto[i]; } } for (i=0; i<ncon; i++) twgt[i] = (max/(ubvec[imax]*ubvec[i]))/pto[i]; twgt[imax] = 0.0; max = 0.0; for (i=0; i<ncon; i++) { if (max < twgt[i] && (PQueueGetSize(&queues[i][0]) > 0 || PQueueGetSize(&queues[i][1]) > 0)) { max = twgt[i]; cnum = i; } } if (max > 1) return cnum; /* optimize of cut */ maxgain = -10000000; for (i=0; i<ncon; i++) { if (PQueueGetSize(&queues[i][0]) > 0 && PQueueGetKey(&queues[i][0]) > maxgain) { maxgain = PQueueGetKey(&queues[i][0]); cnum = i; } } return cnum;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -