⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 minitpart2.c

📁 多层权核k均值算法
💻 C
字号:
/* * Copyright 1997, Regents of the University of Minnesota * * minitpart2.c * * This file contains code that performs the initial partition of the * coarsest graph * * Started 7/23/97 * George * * $Id: minitpart2.c,v 1.1 1998/11/27 17:59:23 karypis Exp $ * */#include <metis.h>/************************************************************************** This function computes the initial bisection of the coarsest graph**************************************************************************/void MocInit2WayPartition2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec) {  int dbglvl;  dbglvl = ctrl->dbglvl;  IFSET(ctrl->dbglvl, DBG_REFINE, ctrl->dbglvl -= DBG_REFINE);  IFSET(ctrl->dbglvl, DBG_MOVEINFO, ctrl->dbglvl -= DBG_MOVEINFO);  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));  switch (ctrl->IType) {    case IPART_GGPKL:    case IPART_RANDOM:      MocGrowBisection2(ctrl, graph, tpwgts, ubvec);      break;    case 3:      MocGrowBisectionNew2(ctrl, graph, tpwgts, ubvec);      break;    default:      errexit("Unknown initial partition type: %d\n", ctrl->IType);  }  IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial Cut: %d\n", graph->mincut));  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));  ctrl->dbglvl = dbglvl;}/************************************************************************** This function takes a graph and produces a bisection by using a region* growing algorithm. The resulting partition is returned in* graph->where**************************************************************************/void MocGrowBisection2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec){  int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs;  idxtype *bestwhere, *where;  nvtxs = graph->nvtxs;  MocAllocate2WayPartitionMemory(ctrl, graph);  where = graph->where;  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");  nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);  bestcut = idxsum(graph->nedges, graph->adjwgt);    for (; nbfs>0; nbfs--) {    idxset(nvtxs, 1, where);    where[RandomInRange(nvtxs)] = 0;    MocCompute2WayPartitionParams(ctrl, graph);    MocBalance2Way2(ctrl, graph, tpwgts, ubvec);    MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4);     MocBalance2Way2(ctrl, graph, tpwgts, ubvec);    MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4);     if (bestcut > graph->mincut) {      bestcut = graph->mincut;      idxcopy(nvtxs, where, bestwhere);      if (bestcut == 0)        break;    }  }  graph->mincut = bestcut;  idxcopy(nvtxs, bestwhere, where);  GKfree((void **) &bestwhere, LTERM);}/************************************************************************** This function takes a graph and produces a bisection by using a region* growing algorithm. The resulting partition is returned in* graph->where**************************************************************************/void MocGrowBisectionNew2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec){  int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs;  idxtype *bestwhere, *where;  nvtxs = graph->nvtxs;  MocAllocate2WayPartitionMemory(ctrl, graph);  where = graph->where;  bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");  nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);  bestcut = idxsum(graph->nedges, graph->adjwgt);    for (; nbfs>0; nbfs--) {    idxset(nvtxs, 1, where);    where[RandomInRange(nvtxs)] = 0;    MocCompute2WayPartitionParams(ctrl, graph);    MocInit2WayBalance2(ctrl, graph, tpwgts, ubvec);    MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4);     if (bestcut > graph->mincut) {      bestcut = graph->mincut;      idxcopy(nvtxs, where, bestwhere);      if (bestcut == 0)        break;    }  }  graph->mincut = bestcut;  idxcopy(nvtxs, bestwhere, where);  GKfree((void **) &bestwhere, LTERM);}/************************************************************************** This function balances two partitions by moving the highest gain * (including negative gain) vertices to the other domain.* It is used only when tha unbalance is due to non contigous* subdomains. That is, the are no boundary vertices.* It moves vertices from the domain that is overweight to the one that * is underweight.**************************************************************************/void MocInit2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec){  int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp, imin;  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;  idxtype *moved, *perm, *qnum;  float *nvwgt, *npwgts, minwgt;  PQueueType parts[MAXNCON][2];  int higain, oldgain, mincut;  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  adjncy = graph->adjncy;  nvwgt = graph->nvwgt;  adjwgt = graph->adjwgt;  where = graph->where;  id = graph->id;  ed = graph->ed;  npwgts = graph->npwgts;  bndptr = graph->bndptr;  bndind = graph->bndind;  moved = idxwspacemalloc(ctrl, nvtxs);  perm = idxwspacemalloc(ctrl, nvtxs);  qnum = idxwspacemalloc(ctrl, nvtxs);  /* This is called for initial partitioning so we know from where to pick nodes */  from = 1;  to = (from+1)%2;  if (ctrl->dbglvl&DBG_REFINE) {    printf("Parts: [");    for (l=0; l<ncon; l++)      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));  }  for (i=0; i<ncon; i++) {    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);  }  idxset(nvtxs, -1, moved);  ASSERT(ComputeCut(graph, where) == graph->mincut);  ASSERT(CheckBnd(graph));  ASSERT(CheckGraph(graph));  /* Compute the queues in which each vertex will be assigned to */  for (i=0; i<nvtxs; i++)    qnum[i] = samax(ncon, nvwgt+i*ncon);  /* Insert the nodes of the proper partition in the appropriate priority queue */  RandomPermute(nvtxs, perm, 1);  for (ii=0; ii<nvtxs; ii++) {    i = perm[ii];    if (where[i] == from) {      if (ed[i] > 0)        PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]);      else        PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]);    }  }/*  for (i=0; i<ncon; i++)    printf("Queue #%d has %d %d\n", i, parts[i][0].nnodes, parts[i][1].nnodes);*/  /* Determine the termination criterion */  imin = 0;  for (i=1; i<ncon; i++)     imin = (ubvec[i] < ubvec[imin] ? i : imin);  minwgt = .5/ubvec[imin];  mincut = graph->mincut;  nbnd = graph->nbnd;  for (nswaps=0; nswaps<nvtxs; nswaps++) {    /* Exit as soon as the minimum weight crossed over */    if (npwgts[to*ncon+imin] > minwgt)        break;    if ((cnum = SelectQueueOneWay2(ncon, npwgts+to*ncon, parts, ubvec)) == -1)      break;    if ((higain = PQueueGetMax(&parts[cnum][0])) == -1)      higain = PQueueGetMax(&parts[cnum][1]);    mincut -= (ed[higain]-id[higain]);    saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);    saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);    where[higain] = to;    moved[higain] = nswaps;    if (ctrl->dbglvl&DBG_MOVEINFO) {      printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut);      for (l=0; l<ncon; l++)         printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);      printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));      if (ed[higain] == 0 && id[higain] > 0)        printf("\t Pulled from the interior!\n");    }    /**************************************************************    * Update the id[i]/ed[i] values of the affected nodes    ***************************************************************/    SWAP(id[higain], ed[higain], tmp);    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])       BNDDelete(nbnd, bndind,  bndptr, higain);    if (ed[higain] > 0 && bndptr[higain] == -1)      BNDInsert(nbnd, bndind,  bndptr, higain);    for (j=xadj[higain]; j<xadj[higain+1]; j++) {      k = adjncy[j];      oldgain = ed[k]-id[k];      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);      INC_DEC(id[k], ed[k], kwgt);      /* Update the queue position */      if (moved[k] == -1 && where[k] == from) {        if (ed[k] > 0 && bndptr[k] == -1) {  /* It moves in boundary */          PQueueDelete(&parts[qnum[k]][1], k, oldgain);          PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]);        }        else { /* It must be in the boundary already */          if (bndptr[k] == -1)            printf("What you thought was wrong!\n");          PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]);        }      }      /* Update its boundary information */      if (ed[k] == 0 && bndptr[k] != -1)         BNDDelete(nbnd, bndind, bndptr, k);      else if (ed[k] > 0 && bndptr[k] == -1)          BNDInsert(nbnd, bndind, bndptr, k);    }    ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut));  }  if (ctrl->dbglvl&DBG_REFINE) {    printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd);    for (l=0; l<ncon; l++)      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);    printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));  }  graph->mincut = mincut;  graph->nbnd = nbnd;  for (i=0; i<ncon; i++) {    PQueueFree(ctrl, &parts[i][0]);    PQueueFree(ctrl, &parts[i][1]);  }  ASSERT(ComputeCut(graph, where) == graph->mincut);  ASSERT(CheckBnd(graph));  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function selects the partition number and the queue from which* we will move vertices out**************************************************************************/ int SelectQueueOneWay2(int ncon, float *pto, PQueueType queues[MAXNCON][2], float *ubvec){  int i, cnum=-1, imax, maxgain;  float max=0.0;  float twgt[MAXNCON];  for (i=0; i<ncon; i++) {    if (max < pto[i]) {      imax = i;      max = pto[i];    }  }  for (i=0; i<ncon; i++)     twgt[i] = (max/(ubvec[imax]*ubvec[i]))/pto[i];  twgt[imax] = 0.0;  max = 0.0;  for (i=0; i<ncon; i++) {    if (max < twgt[i] && (PQueueGetSize(&queues[i][0]) > 0 || PQueueGetSize(&queues[i][1]) > 0)) {      max = twgt[i];      cnum = i;    }  }  if (max > 1)    return cnum;  /* optimize of cut */  maxgain = -10000000;  for (i=0; i<ncon; i++) {    if (PQueueGetSize(&queues[i][0]) > 0 && PQueueGetKey(&queues[i][0]) > maxgain) {      maxgain = PQueueGetKey(&queues[i][0]);      cnum = i;    }  }  return cnum;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -