⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mfm2.c

📁 多层权核k均值算法
💻 C
字号:
/* * Copyright 1997, Regents of the University of Minnesota * * mfm2.c * * This file contains code that implements the edge-based FM refinement * * Started 7/23/97 * George * * $Id: mfm2.c,v 1.2 1998/11/30 14:50:44 karypis Exp $ */#include <metis.h>/************************************************************************** This function performs an edge-based FM refinement**************************************************************************/void MocFM_2WayEdgeRefine2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *orgubvec,        int npasses){  int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, pass, me, limit, tmp, cnum;  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;  idxtype *moved, *swaps, *perm, *qnum;  float *nvwgt, *npwgts, origdiff[MAXNCON], origbal[MAXNCON], minbal[MAXNCON];  PQueueType parts[MAXNCON][2];  int higain, oldgain, mincut, initcut, newcut, mincutorder;  float *maxwgt, *minwgt, ubvec[MAXNCON], tvec[MAXNCON];  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  where = graph->where;  id = graph->id;  ed = graph->ed;  npwgts = graph->npwgts;  bndptr = graph->bndptr;  bndind = graph->bndind;  moved = idxwspacemalloc(ctrl, nvtxs);  swaps = idxwspacemalloc(ctrl, nvtxs);  perm = idxwspacemalloc(ctrl, nvtxs);  qnum = idxwspacemalloc(ctrl, nvtxs);  limit = (int) amin(amax(0.01*nvtxs, 15), 100);  Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal);  for (i=0; i<ncon; i++) {    origdiff[i] = fabs(tpwgts[0]-npwgts[i]);    ubvec[i] = amax(origbal[i], orgubvec[i]);  }  /* Setup the weight intervals of the two subdomains */  minwgt = fwspacemalloc(ctrl, 2*ncon);  maxwgt = fwspacemalloc(ctrl, 2*ncon);  for (i=0; i<2; i++) {    for (j=0; j<ncon; j++) {      maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j];      minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]);    }  }  /* Initialize the queues */  for (i=0; i<ncon; i++) {    PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);    PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);  }  for (i=0; i<nvtxs; i++)    qnum[i] = samax(ncon, nvwgt+i*ncon);  if (ctrl->dbglvl&DBG_REFINE) {    printf("Parts: [");    for (l=0; l<ncon; l++)      printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);    printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1],             graph->nvtxs, graph->nbnd, graph->mincut);    for (i=0; i<ncon; i++)      printf("%.3f ", origbal[i]);    printf("\n");  }  idxset(nvtxs, -1, moved);  for (pass=0; pass<npasses; pass++) { /* Do a number of passes */    for (i=0; i<ncon; i++) {       PQueueReset(&parts[i][0]);      PQueueReset(&parts[i][1]);    }    mincutorder = -1;    newcut = mincut = initcut = graph->mincut;    Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, minbal);    ASSERT(ComputeCut(graph, where) == graph->mincut);    ASSERT(CheckBnd(graph));    /* Insert boundary nodes in the priority queues */    nbnd = graph->nbnd;    RandomPermute(nbnd, perm, 1);    for (ii=0; ii<nbnd; ii++) {      i = bndind[perm[ii]];      ASSERT(ed[i] > 0 || id[i] == 0);      ASSERT(bndptr[i] != -1);      PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]);    }    for (nswaps=0; nswaps<nvtxs; nswaps++) {      SelectQueue2(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt);      to = (from+1)%2;      if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1)        break;      ASSERT(bndptr[higain] != -1);      newcut -= (ed[higain]-id[higain]);      saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);      saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);      Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec);      if ((newcut < mincut && AreAllBelow(ncon, tvec, ubvec)) ||          (newcut == mincut && IsBetter2wayBalance(ncon, tvec, minbal, ubvec))) {        mincut = newcut;        for (i=0; i<ncon; i++)           minbal[i] = tvec[i];        mincutorder = nswaps;      }      else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */        newcut += (ed[higain]-id[higain]);        saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);        saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);        break;      }      where[higain] = to;      moved[higain] = nswaps;      swaps[nswaps] = higain;      if (ctrl->dbglvl&DBG_MOVEINFO) {        printf("Moved %6d from %d(%d). Gain: %5d, Cut: %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], newcut);        for (l=0; l<ncon; l++)           printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);        printf(", LB: ");        for (i=0; i<ncon; i++)           printf("%.3f ", tvec[i]);        if (mincutorder == nswaps)          printf(" *\n");        else          printf("\n");      }      /**************************************************************      * Update the id[i]/ed[i] values of the affected nodes      ***************************************************************/      SWAP(id[higain], ed[higain], tmp);      if (ed[higain] == 0 && xadj[higain] < xadj[higain+1])         BNDDelete(nbnd, bndind,  bndptr, higain);      for (j=xadj[higain]; j<xadj[higain+1]; j++) {        k = adjncy[j];        oldgain = ed[k]-id[k];        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);        INC_DEC(id[k], ed[k], kwgt);        /* Update its boundary information and queue position */        if (bndptr[k] != -1) { /* If k was a boundary vertex */          if (ed[k] == 0) { /* Not a boundary vertex any more */            BNDDelete(nbnd, bndind, bndptr, k);            if (moved[k] == -1)  /* Remove it if in the queues */              PQueueDelete(&parts[qnum[k]][where[k]], k, oldgain);          }          else { /* If it has not been moved, update its position in the queue */            if (moved[k] == -1)              PQueueUpdate(&parts[qnum[k]][where[k]], k, oldgain, ed[k]-id[k]);          }        }        else {          if (ed[k] > 0) {  /* It will now become a boundary vertex */            BNDInsert(nbnd, bndind, bndptr, k);            if (moved[k] == -1)               PQueueInsert(&parts[qnum[k]][where[k]], k, ed[k]-id[k]);          }        }      }    }    /****************************************************************    * Roll back computations    *****************************************************************/    for (i=0; i<nswaps; i++)      moved[swaps[i]] = -1;  /* reset moved array */    for (nswaps--; nswaps>mincutorder; nswaps--) {      higain = swaps[nswaps];      to = where[higain] = (where[higain]+1)%2;      SWAP(id[higain], ed[higain], tmp);      if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])        BNDDelete(nbnd, bndind,  bndptr, higain);      else if (ed[higain] > 0 && bndptr[higain] == -1)        BNDInsert(nbnd, bndind,  bndptr, higain);      saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);      saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);      for (j=xadj[higain]; j<xadj[higain+1]; j++) {        k = adjncy[j];        kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);        INC_DEC(id[k], ed[k], kwgt);        if (bndptr[k] != -1 && ed[k] == 0)          BNDDelete(nbnd, bndind, bndptr, k);        if (bndptr[k] == -1 && ed[k] > 0)          BNDInsert(nbnd, bndind, bndptr, k);      }    }    if (ctrl->dbglvl&DBG_REFINE) {      printf("\tMincut: %6d at %5d, NBND: %6d, NPwgts: [", mincut, mincutorder, nbnd);      for (l=0; l<ncon; l++)        printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);      printf("], LB: ");      Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, tvec);      for (i=0; i<ncon; i++)         printf("%.3f ", tvec[i]);      printf("\n");    }    graph->mincut = mincut;    graph->nbnd = nbnd;    if (mincutorder == -1 || mincut == initcut)      break;  }  for (i=0; i<ncon; i++) {    PQueueFree(ctrl, &parts[i][0]);    PQueueFree(ctrl, &parts[i][1]);  }  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);  fwspacefree(ctrl, 2*ncon);  fwspacefree(ctrl, 2*ncon);}/************************************************************************** This function selects the partition number and the queue from which* we will move vertices out**************************************************************************/ void SelectQueue2(int ncon, float *npwgts, float *tpwgts, int *from, int *cnum,        PQueueType queues[MAXNCON][2], float *maxwgt){  int i, j, maxgain=0;  float diff, max, maxdiff=0.0;  *from = -1;  *cnum = -1;  /* First determine the side and the queue, irrespective of the presence of nodes */  for (j=0; j<2; j++) {    for (i=0; i<ncon; i++) {      diff = npwgts[j*ncon+i]-maxwgt[j*ncon+i];      if (diff >= maxdiff) {        maxdiff = diff;        *from = j;        *cnum = i;      }    }  }  if (*from != -1 && PQueueGetSize(&queues[*cnum][*from]) == 0) {    /* The desired queue is empty, select a node from that side anyway */    for (i=0; i<ncon; i++) {      if (PQueueGetSize(&queues[i][*from]) > 0) {        max = (npwgts[(*from)*ncon+i] - maxwgt[(*from)*ncon+i]);        *cnum = i;        break;      }    }    for (i++; i<ncon; i++) {      diff = npwgts[(*from)*ncon+i] - maxwgt[(*from)*ncon+i];      if (diff > max && PQueueGetSize(&queues[i][*from]) > 0) {        max = diff;        *cnum = i;      }    }  }  /* Check to see if you can focus on the cut */  if (maxdiff <= 0.0 || *from == -1) {    maxgain = -100000;    for (j=0; j<2; j++) {      for (i=0; i<ncon; i++) {        if (PQueueGetSize(&queues[i][j]) > 0 && PQueueGetKey(&queues[i][j]) > maxgain) {          maxgain = PQueueGetKey(&queues[i][j]);           *from = j;          *cnum = i;        }      }    }    /* printf("(%2d %2d) %3d\n", *from, *cnum, maxgain); */  }}/************************************************************************** This function checks if the newbal is better than oldbal given the* ubvector ubvec**************************************************************************/int IsBetter2wayBalance(int ncon, float *newbal, float *oldbal, float *ubvec){  int i, j;  float max1=0.0, max2=0.0, sum1=0.0, sum2=0.0, tmp;  for (i=0; i<ncon; i++) {    tmp = (newbal[i]-1)/(ubvec[i]-1);    max1 = (max1 < tmp ? tmp : max1);    sum1 += tmp;    tmp = (oldbal[i]-1)/(ubvec[i]-1);    max2 = (max2 < tmp ? tmp : max2);    sum2 += tmp;  }  if (max1 < max2)    return 1;  else if (max1 > max2)    return 0;  else    return sum1 <= sum2;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -