📄 subdomains.c
字号:
if (pwgts[to]+vwgt <= maxwgt[to] || itpwgts[from]*(pwgts[to]+vwgt) <= itpwgts[to]*pwgts[from]) break; } if (k == myndegrees) continue; /* break out if you did not find a candidate */ for (j=k+1; j<myndegrees; j++) { to = myedegrees[j].pid; if (!phtable[to]) continue; if (itpwgts[myedegrees[k].pid]*pwgts[to] < itpwgts[to]*pwgts[myedegrees[k].pid]) k = j; } to = myedegrees[k].pid; if (pwgts[from] < maxwgt[from] && pwgts[to] > minwgt[to] && myedegrees[k].ed-myrinfo->id < 0) continue; /*===================================================================== * If we got here, we can now move the vertex from 'from' to 'to' *======================================================================*/ graph->mincut -= myedegrees[k].ed-myrinfo->id; IFSET(ctrl->dbglvl, DBG_MOVEINFO, printf("\t\tMoving %6d to %3d. Gain: %4d. Cut: %6d\n", i, to, myedegrees[k].ed-myrinfo->id, graph->mincut)); /* Update pmat to reflect the move of 'i' */ pmat[from*nparts+to] += (myrinfo->id-myedegrees[k].ed); pmat[to*nparts+from] += (myrinfo->id-myedegrees[k].ed); if (pmat[from*nparts+to] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[to*nparts+from] == 0) { ndoms[to]--; if (ndoms[to]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } /* Update where, weight, and ID/ED information of the vertex you moved */ where[i] = to; INC_DEC(pwgts[to], pwgts[from], vwgt); myrinfo->ed += myrinfo->id-myedegrees[k].ed; SWAP(myrinfo->id, myedegrees[k].ed, j); if (myedegrees[k].ed == 0) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].pid = from; if (myrinfo->ed == 0) BNDDelete(nbnd, bndind, bndptr, i); /* Update the degrees of adjacent vertices */ for (j=xadj[i]; j<xadj[i+1]; j++) { ii = adjncy[j]; me = where[ii]; myrinfo = graph->rinfo+ii; if (myrinfo->edegrees == NULL) { myrinfo->edegrees = ctrl->wspace.edegrees+ctrl->wspace.cdegree; ctrl->wspace.cdegree += xadj[ii+1]-xadj[ii]; } myedegrees = myrinfo->edegrees; ASSERT(CheckRInfo(myrinfo)); oldgain = (myrinfo->ed-myrinfo->id); if (me == from) { INC_DEC(myrinfo->ed, myrinfo->id, adjwgt[j]); if (myrinfo->ed > 0 && bndptr[ii] == -1) BNDInsert(nbnd, bndind, bndptr, ii); } else if (me == to) { INC_DEC(myrinfo->id, myrinfo->ed, adjwgt[j]); if (myrinfo->ed == 0 && bndptr[ii] != -1) BNDDelete(nbnd, bndind, bndptr, ii); } /* Remove contribution from the .ed of 'from' */ if (me != from) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == from) { if (myedegrees[k].ed == adjwgt[j]) myedegrees[k] = myedegrees[--myrinfo->ndegrees]; else myedegrees[k].ed -= adjwgt[j]; break; } } } /* Add contribution to the .ed of 'to' */ if (me != to) { for (k=0; k<myrinfo->ndegrees; k++) { if (myedegrees[k].pid == to) { myedegrees[k].ed += adjwgt[j]; break; } } if (k == myrinfo->ndegrees) { myedegrees[myrinfo->ndegrees].pid = to; myedegrees[myrinfo->ndegrees++].ed = adjwgt[j]; } } /* Update pmat to reflect the move of 'i' for domains other than 'from' and 'to' */ if (me != from && me != to) { pmat[me*nparts+from] -= adjwgt[j]; pmat[from*nparts+me] -= adjwgt[j]; if (pmat[me*nparts+from] == 0) { ndoms[me]--; if (ndoms[me]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[from*nparts+me] == 0) { ndoms[from]--; if (ndoms[from]+1 == maxndoms) maxndoms = ndoms[idxamax(nparts, ndoms)]; } if (pmat[me*nparts+to] == 0) { ndoms[me]++; if (ndoms[me] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[me], maxndoms); maxndoms = ndoms[me]; } } if (pmat[to*nparts+me] == 0) { ndoms[to]++; if (ndoms[to] > maxndoms) { printf("You just increased the maxndoms: %d %d\n", ndoms[to], maxndoms); maxndoms = ndoms[to]; } } pmat[me*nparts+to] += adjwgt[j]; pmat[to*nparts+me] += adjwgt[j]; } /* Update the queue */ if (me == to || me == from) { gain = myrinfo->ed-myrinfo->id; if (moved[ii] == 2) { if (myrinfo->ed > 0) PQueueUpdate(&queue, ii, oldgain, gain); else { PQueueDelete(&queue, ii, oldgain); moved[ii] = -1; } } else if (moved[ii] == -1 && myrinfo->ed > 0) { PQueueInsert(&queue, ii, gain); moved[ii] = 2; } } ASSERT(myrinfo->ndegrees <= xadj[ii+1]-xadj[ii]); ASSERT(CheckRInfo(myrinfo)); } nmoves++; } graph->nbnd = nbnd; IFSET(ctrl->dbglvl, DBG_REFINE, printf("\t[%6d %6d], Balance: %5.3f, Nb: %6d. Nmoves: %5d, Cut: %6d, %d\n", pwgts[idxamin(nparts, pwgts)], pwgts[idxamax(nparts, pwgts)], 1.0*nparts*pwgts[idxamax(nparts, pwgts)]/tvwgt, graph->nbnd, nmoves, graph->mincut,idxsum(nparts, ndoms))); } PQueueFree(ctrl, &queue); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nparts); idxwspacefree(ctrl, nvtxs); idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function computes the subdomain graph**************************************************************************/void PrintSubDomainGraph(GraphType *graph, int nparts, idxtype *where){ int i, j, k, me, nvtxs, total, max; idxtype *xadj, *adjncy, *adjwgt, *pmat; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; pmat = idxsmalloc(nparts*nparts, 0, "ComputeSubDomainGraph: pmat"); for (i=0; i<nvtxs; i++) { me = where[i]; for (j=xadj[i]; j<xadj[i+1]; j++) { k = adjncy[j]; if (where[k] != me) pmat[me*nparts+where[k]] += adjwgt[j]; } } /* printf("Subdomain Info\n"); */ total = max = 0; for (i=0; i<nparts; i++) { for (k=0, j=0; j<nparts; j++) { if (pmat[i*nparts+j] > 0) k++; } total += k; if (k > max) max = k;/* printf("%2d -> %2d ", i, k); for (j=0; j<nparts; j++) { if (pmat[i*nparts+j] > 0) printf("[%2d %4d] ", j, pmat[i*nparts+j]); } printf("\n");*/ } printf("Total adjacent subdomains: %d, Max: %d\n", total, max); free(pmat);}/************************************************************************** This function computes the subdomain graph**************************************************************************/void ComputeSubDomainGraph(GraphType *graph, int nparts, idxtype *pmat, idxtype *ndoms){ int i, j, k, me, nvtxs, ndegrees; idxtype *xadj, *adjncy, *adjwgt, *where; RInfoType *rinfo; EDegreeType *edegrees; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; rinfo = graph->rinfo; idxset(nparts*nparts, 0, pmat); for (i=0; i<nvtxs; i++) { if (rinfo[i].ed > 0) { me = where[i]; ndegrees = rinfo[i].ndegrees; edegrees = rinfo[i].edegrees; k = me*nparts; for (j=0; j<ndegrees; j++) pmat[k+edegrees[j].pid] += edegrees[j].ed; } } for (i=0; i<nparts; i++) { ndoms[i] = 0; for (j=0; j<nparts; j++) { if (pmat[i*nparts+j] > 0) ndoms[i]++; } }}/************************************************************************** This function computes the subdomain graph**************************************************************************/void EliminateSubDomainEdges(CtrlType *ctrl, GraphType *graph, int nparts, float *tpwgts){ int i, ii, j, k, me, other, nvtxs, total, max, avg, totalout, nind, ncand, ncand2, target, target2, nadd; int min, move, cpwgt, tvwgt; idxtype *xadj, *adjncy, *vwgt, *adjwgt, *pwgts, *where, *maxpwgt, *pmat, *ndoms, *mypmat, *otherpmat, *ind; KeyValueType *cand, *cand2; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vwgt = graph->vwgt; adjwgt = graph->adjwgt; where = graph->where; pwgts = graph->pwgts; /* We assume that this is properly initialized */ maxpwgt = idxwspacemalloc(ctrl, nparts); ndoms = idxwspacemalloc(ctrl, nparts); otherpmat = idxwspacemalloc(ctrl, nparts); ind = idxwspacemalloc(ctrl, nvtxs); pmat = ctrl->wspace.pmat; cand = (KeyValueType *)GKmalloc(nparts*sizeof(KeyValueType), "EliminateSubDomainEdges: cand"); cand2 = (KeyValueType *)GKmalloc(nparts*sizeof(KeyValueType), "EliminateSubDomainEdges: cand"); /* Compute the pmat matrix and ndoms */ ComputeSubDomainGraph(graph, nparts, pmat, ndoms); /* Compute the maximum allowed weight for each domain */ tvwgt = idxsum(nparts, pwgts); for (i=0; i<nparts; i++) maxpwgt[i] = 1.25*tpwgts[i]*tvwgt; /* Get into the loop eliminating subdomain connections */ for (;;) { total = idxsum(nparts, ndoms); avg = total/nparts; max = ndoms[idxamax(nparts, ndoms)]; /* printf("Adjacent Subdomain Stats: Total: %3d, Max: %3d, Avg: %3d [%5d]\n", total, max, avg, idxsum(nparts*nparts, pmat)); */ if (max < 1.4*avg) break; me = idxamax(nparts, ndoms); mypmat = pmat + me*nparts; totalout = idxsum(nparts, mypmat); /*printf("Me: %d, TotalOut: %d,\n", me, totalout);*/ /* Sort the connections according to their cut */ for (ncand2=0, i=0; i<nparts; i++) { if (mypmat[i] > 0) { cand2[ncand2].key = mypmat[i]; cand2[ncand2++].val = i; } } ikeysort(ncand2, cand2); move = 0; for (min=0; min<ncand2; min++) { if (cand2[min].key > totalout/(2*ndoms[me])) break; other = cand2[min].val; /*printf("\tMinOut: %d to %d\n", mypmat[other], other);*/ idxset(nparts, 0, otherpmat); /* Go and find the vertices in 'other' that are connected in 'me' */ for (nind=0, i=0; i<nvtxs; i++) { if (where[i] == other) { for (j=xadj[i]; j<xadj[i+1]; j++) { if (where[adjncy[j]] == me) { ind[nind++] = i; break; } } } } /* Go and construct the otherpmat to see where these nind vertices are connected to */ for (cpwgt=0, ii=0; ii<nind; ii++) { i = ind[ii]; cpwgt += vwgt[i]; for (j=xadj[i]; j<xadj[i+1]; j++) otherpmat[where[adjncy[j]]] += adjwgt[j]; } otherpmat[other] = 0; for (ncand=0, i=0; i<nparts; i++) { if (otherpmat[i] > 0) { cand[ncand].key = -otherpmat[i]; cand[ncand++].val = i; } } ikeysort(ncand, cand); /* * Go through and the select the first domain that is common with 'me', and * does not increase the ndoms[target] higher than my ndoms, subject to the * maxpwgt constraint. Traversal is done from the mostly connected to the least. */ target = target2 = -1; for (i=0; i<ncand; i++) { k = cand[i].val; if (mypmat[k] > 0) { if (pwgts[k] + cpwgt > maxpwgt[k]) /* Check if balance will go off */ continue; for (j=0; j<nparts; j++) { if (otherpmat[j] > 0 && ndoms[j] >= ndoms[me]-1 && pmat[nparts*j+k] == 0) break; } if (j == nparts) { /* No bad second level effects */ for (nadd=0, j=0; j<nparts; j++) { if (otherpmat[j] > 0 && pmat[nparts*k+j] == 0) nadd++; } /*printf("\t\tto=%d, nadd=%d, %d\n", k, nadd, ndoms[k]);*/ if (target2 == -1 && ndoms[k]+nadd < ndoms[me]) { target2 = k; } if (nadd == 0) { target = k; break; } } } } if (target == -1 && target2 != -1) target = target2; if (target == -1) { /* printf("\t\tCould not make the move\n");*/ continue; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -