⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix3.java

📁 是实现关系型贝叶斯网络一中机器学习算法
💻 JAVA
字号:
package rmn;import java.util.*;import java.lang.reflect.*;public class Matrix3 implements Matrix {  public double[][][] m_matrix;  public Matrix3()  {  }  public Matrix3(int nCard1, int nCard2, int nCard3)  {    m_matrix = new double[nCard1][nCard2][nCard3];  }  public Matrix3(double[][][] matrix)  {    m_matrix = matrix;  }  public Matrix3(Matrix3 matrix3)  {    m_matrix = new double[matrix3.m_matrix.length][][];    for (int i = 0; i < m_matrix.length; i++) {      m_matrix[i] = new double[matrix3.m_matrix[i].length][];      for (int j = 0; j < m_matrix[i].length; j++) {        m_matrix[i][j] = new double[matrix3.m_matrix[i][j].length];        System.arraycopy(matrix3.m_matrix[i][j], 0, m_matrix[i][j], 0,                          m_matrix[i][j].length);      }    }  }  public Matrix getCopy()  {    return new Matrix3(this);  }    public Matrix newMatrix()  {    Matrix3 m = new Matrix3();    m.m_matrix = new double[m_matrix.length][][];    for (int i = 0; i < m_matrix.length; i++) {      m.m_matrix[i] = new double[m_matrix[i].length][];      for (int j = 0; j < m_matrix[i].length; j++)        m.m_matrix[i][j] = new double[m_matrix[i][j].length];    }    return m;  }  public void fill(double val)  {    for (int i = 0; i < m_matrix.length; i++)      for (int j = 0; j < m_matrix[i].length; j++)        Arrays.fill(m_matrix[i][j], val);  }  public int size()  {    return 3;  }  public int[] getDimensions()  {    int[] dims = new int[size()];    dims[0] = m_matrix.length;    dims[1] = m_matrix[0].length;    dims[2] = m_matrix[0][0].length;    return dims;   }  public void inc(int[] pos)  {    assert pos.length == size() : pos.length;    m_matrix[pos[0]][pos[1]][pos[2]]++;  }  public void add_sub(Matrix matrix1, Matrix matrix2, double rate)  {    Matrix3 m1 =  (Matrix3) matrix1;    Matrix3 m2 =  (Matrix3) matrix2;    int[] dims = getDimensions();    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++)        for (int k = 0; k < dims[2]; k++) {	  double grad = (m1.m_matrix[i][j][k] - m2.m_matrix[i][j][k]) * rate;          m_matrix[i][j][k] = m_matrix[i][j][k] * Math.exp(grad);	}  }  public void add_log(Matrix matrix, int delta)  {    Matrix3 m =  (Matrix3) matrix;    int[] dims = getDimensions();    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++)        for (int k = 0; k < dims[2]; k++) {	  m_matrix[i][j][k] = m_matrix[i][j][k] + delta * Math.log(m.m_matrix[i][j][k]);	}  }  public Matrix exp_avg(int n)  {    Matrix3 m = (Matrix3) newMatrix();    int[] dims = getDimensions();    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++)        for (int k = 0; k < dims[2]; k++) {	  m.m_matrix[i][j][k] = Math.exp(m_matrix[i][j][k] / n);	}        return m;  }  public void dotProduct(Matrix matrix)  {    Matrix3 matrix3 =  (Matrix3) matrix;    int[] dims = getDimensions();    int[] dimsm = matrix3.getDimensions();        // dimensions should match    for (int i = 0; i < dims.length; i++)      assert dimsm[i] == dims[i] : dimsm[i];    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++)        for (int k = 0; k < dims[2]; k++)          m_matrix[i][j][k] = m_matrix[i][j][k] * matrix3.m_matrix[i][j][k];  }  public void dotProduct(double[] vector, int dim)  {    assert dim < size() : dim;    int[] dims = getDimensions();    assert vector.length == dims[dim] : vector.length;    int idx[] = {0, 0, 0};    for (idx[0] = 0; idx[0] < dims[0]; idx[0]++)      for (idx[1] = 0; idx[1] < dims[1]; idx[1]++)        for (idx[2] = 0; idx[2] < dims[2]; idx[2]++)          m_matrix[idx[0]][idx[1]][idx[2]] =             m_matrix[idx[0]][idx[1]][idx[2]] * vector[idx[dim]];  }  public void dotQuotient(double[] vector, int dim)  {    assert dim < size() : dim;    int[] dims = getDimensions();    assert vector.length == dims[dim] : vector.length;    int idx[] = {0, 0, 0};    for (idx[0] = 0; idx[0] < dims[0]; idx[0]++)      for (idx[1] = 0; idx[1] < dims[1]; idx[1]++)        for (idx[2] = 0; idx[2] < dims[2]; idx[2]++)          m_matrix[idx[0]][idx[1]][idx[2]] =             m_matrix[idx[0]][idx[1]][idx[2]] / vector[idx[dim]];  }    public double[] marginalize(int dim, boolean bMaximize)  {    assert dim < size() : dim;    //    Method sumOrMax = MathUtils.getSumOrMax(bMaximize);    int[] dims = getDimensions();        double[] margin = new double[dims[dim]];    // assume positive potentials    Arrays.fill(margin, 0);    try {      int idx[] = {0, 0, 0};      for (idx[0] = 0; idx[0] < dims[0]; idx[0]++)        for (idx[1] = 0; idx[1] < dims[1]; idx[1]++)          for (idx[2] = 0; idx[2] < dims[2]; idx[2]++) {	    /*            Object[] params = {new Double(margin[idx[dim]]),                               new Double(m_matrix[idx[0]][idx[1]][idx[2]])};            margin[idx[dim]] = ((Double) sumOrMax.invoke(null,							 params)).doubleValue();	    */	    if (bMaximize)	      margin[idx[dim]] = Math.max(margin[idx[dim]],					  m_matrix[idx[0]][idx[1]][idx[2]]);	    else	      margin[idx[dim]] += m_matrix[idx[0]][idx[1]][idx[2]];          }    }    catch (Exception e) {      System.err.println(e);      System.exit(1);    }        return margin;  }  public String toString()  {    String strRes = new String();    for (int i = 0; i < m_matrix.length; i++) {      for (int j = 0; j < m_matrix[i].length; j++) {	for (int k = 0; k < m_matrix[i][j].length; k++)	  strRes += String.valueOf(m_matrix[i][j][k]) + " ";	strRes += "\n";      }      strRes += "\n";    }        return strRes;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -