⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 matrix2.java

📁 是实现关系型贝叶斯网络一中机器学习算法
💻 JAVA
字号:
package rmn;import java.util.*;import java.lang.reflect.*;public class Matrix2 implements Matrix {  public double[][] m_matrix;  public Matrix2()  {  }  public Matrix2(int nCard1, int nCard2)  {    m_matrix = new double[nCard1][nCard2];  }  public Matrix2(double[][] matrix)  {    m_matrix = matrix;  }  public Matrix2(Matrix2 matrix2)  {    m_matrix = new double[matrix2.m_matrix.length][];    for (int i = 0; i < m_matrix.length; i++) {      m_matrix[i] = new double[matrix2.m_matrix[i].length];      System.arraycopy(matrix2.m_matrix[i], 0, m_matrix[i], 0, m_matrix[i].length);    }  }  public Matrix getCopy()  {    return new Matrix2(this);  }    public Matrix newMatrix()  {    Matrix2 m = new Matrix2();    m.m_matrix = new double[m_matrix.length][];    for (int i = 0; i < m_matrix.length; i++)      m.m_matrix[i] = new double[m_matrix[i].length];    return m;  }  public void fill(double val)  {    for (int i = 0; i < m_matrix.length; i++)      Arrays.fill(m_matrix[i], val);  }  public int size()  {    return 2;  }  public int[] getDimensions()  {    int[] dims = new int[size()];    dims[0] = m_matrix.length;    dims[1] = m_matrix[0].length;    return dims;   }  public void inc(int[] pos)  {    assert pos.length == size() : pos.length;    m_matrix[pos[0]][pos[1]]++;  }  public void add_sub(Matrix matrix1, Matrix matrix2, double rate)  {    Matrix2 m1 =  (Matrix2) matrix1;    Matrix2 m2 =  (Matrix2) matrix2;    int[] dims = getDimensions();    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++) {	double grad = (m1.m_matrix[i][j] - m2.m_matrix[i][j]) * rate;        m_matrix[i][j] = m_matrix[i][j] * Math.exp(grad);	assert !Double.isNaN(m_matrix[i][j]) : grad;	assert !Double.isInfinite(m_matrix[i][j]) : grad;      }  }  public void add_log(Matrix matrix, int delta)  {    Matrix2 m =  (Matrix2) matrix;    int[] dims = getDimensions();    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++) {        m_matrix[i][j] = m_matrix[i][j] + delta * Math.log(m.m_matrix[i][j]);      }  }  public Matrix exp_avg(int n)  {    Matrix2 m = (Matrix2) newMatrix();    int[] dims = getDimensions();    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++) {	m.m_matrix[i][j] = Math.exp(m_matrix[i][j] / n);      }        return m;  }  public void dotProduct(Matrix matrix)  {    Matrix2 matrix2 =  (Matrix2) matrix;    int[] dims = getDimensions();    int[] dimsm = matrix2.getDimensions();        // dimensions should match    for (int i = 0; i < dims.length; i++)      assert dimsm[i] == dims[i] : dimsm[i];    for (int i = 0; i < dims[0]; i++)      for (int j = 0; j < dims[1]; j++) {        m_matrix[i][j] = m_matrix[i][j] * matrix2.m_matrix[i][j];	assert !Double.isNaN(m_matrix[i][j]) : matrix2.m_matrix[i][j];	assert !Double.isInfinite(m_matrix[i][j]) : matrix2.m_matrix[i][j];      }  }  public void dotProduct(double[] vector, int dim)  {    assert dim < size() : dim;    int[] dims = getDimensions();    assert vector.length == dims[dim] : vector.length;    int idx[] = {0, 0};    for (idx[0] = 0; idx[0] < dims[0]; idx[0]++)      for (idx[1] = 0; idx[1] < dims[1]; idx[1]++) {	double old = m_matrix[idx[0]][idx[1]];        m_matrix[idx[0]][idx[1]] = m_matrix[idx[0]][idx[1]] * vector[idx[dim]];	assert !Double.isNaN(m_matrix[idx[0]][idx[1]]);	assert !Double.isInfinite(m_matrix[idx[0]][idx[1]]);      }  }  public void dotQuotient(double[] vector, int dim)  {    assert dim < size() : dim;    int[] dims = getDimensions();    assert vector.length == dims[dim] : vector.length;    int idx[] = {0, 0};    for (idx[0] = 0; idx[0] < dims[0]; idx[0]++)      for (idx[1] = 0; idx[1] < dims[1]; idx[1]++) {        m_matrix[idx[0]][idx[1]] = m_matrix[idx[0]][idx[1]] / vector[idx[dim]];	assert vector[idx[dim]] != 0;	assert !Double.isNaN(m_matrix[idx[0]][idx[1]]);	assert !Double.isInfinite(m_matrix[idx[0]][idx[1]]);      }  }    public double[] marginalize(int dim, boolean bMaximize)  {    assert dim < size() : dim;    //    Method sumOrMax = MathUtils.getSumOrMax(bMaximize);    int[] dims = getDimensions();    double[] margin = new double[dims[dim]];    // assume positive potentials - ? compare with learning results    Arrays.fill(margin, 0);    try {      int idx[] = {0, 0};      for (idx[0] = 0; idx[0] < dims[0]; idx[0]++)        for (idx[1] = 0; idx[1] < dims[1]; idx[1]++) {	  /*          Object[] params = {new Double(margin[idx[dim]]),                             new Double(m_matrix[idx[0]][idx[1]])};          margin[idx[dim]] = ((Double) sumOrMax.invoke(null,						       params)).doubleValue();	  */	  if (bMaximize)	    margin[idx[dim]] = Math.max(margin[idx[dim]], 					m_matrix[idx[0]][idx[1]]);	  else	    margin[idx[dim]] += m_matrix[idx[0]][idx[1]];	  	  assert !Double.isNaN(margin[idx[dim]]);	  assert !Double.isInfinite(margin[idx[dim]]);        }    }    catch (Exception e) {      System.err.println(e);      System.exit(1);    }    return margin;  }  public String toString()  {    String strRes = new String();    for (int i = 0; i < m_matrix.length; i++) {      for (int j = 0; j < m_matrix[i].length; j++)	strRes += String.valueOf(m_matrix[i][j]) + " ";      strRes += "\n";    }    return strRes;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -