📄 matrix2.java
字号:
package rmn;import java.util.*;import java.lang.reflect.*;public class Matrix2 implements Matrix { public double[][] m_matrix; public Matrix2() { } public Matrix2(int nCard1, int nCard2) { m_matrix = new double[nCard1][nCard2]; } public Matrix2(double[][] matrix) { m_matrix = matrix; } public Matrix2(Matrix2 matrix2) { m_matrix = new double[matrix2.m_matrix.length][]; for (int i = 0; i < m_matrix.length; i++) { m_matrix[i] = new double[matrix2.m_matrix[i].length]; System.arraycopy(matrix2.m_matrix[i], 0, m_matrix[i], 0, m_matrix[i].length); } } public Matrix getCopy() { return new Matrix2(this); } public Matrix newMatrix() { Matrix2 m = new Matrix2(); m.m_matrix = new double[m_matrix.length][]; for (int i = 0; i < m_matrix.length; i++) m.m_matrix[i] = new double[m_matrix[i].length]; return m; } public void fill(double val) { for (int i = 0; i < m_matrix.length; i++) Arrays.fill(m_matrix[i], val); } public int size() { return 2; } public int[] getDimensions() { int[] dims = new int[size()]; dims[0] = m_matrix.length; dims[1] = m_matrix[0].length; return dims; } public void inc(int[] pos) { assert pos.length == size() : pos.length; m_matrix[pos[0]][pos[1]]++; } public void add_sub(Matrix matrix1, Matrix matrix2, double rate) { Matrix2 m1 = (Matrix2) matrix1; Matrix2 m2 = (Matrix2) matrix2; int[] dims = getDimensions(); for (int i = 0; i < dims[0]; i++) for (int j = 0; j < dims[1]; j++) { double grad = (m1.m_matrix[i][j] - m2.m_matrix[i][j]) * rate; m_matrix[i][j] = m_matrix[i][j] * Math.exp(grad); assert !Double.isNaN(m_matrix[i][j]) : grad; assert !Double.isInfinite(m_matrix[i][j]) : grad; } } public void add_log(Matrix matrix, int delta) { Matrix2 m = (Matrix2) matrix; int[] dims = getDimensions(); for (int i = 0; i < dims[0]; i++) for (int j = 0; j < dims[1]; j++) { m_matrix[i][j] = m_matrix[i][j] + delta * Math.log(m.m_matrix[i][j]); } } public Matrix exp_avg(int n) { Matrix2 m = (Matrix2) newMatrix(); int[] dims = getDimensions(); for (int i = 0; i < dims[0]; i++) for (int j = 0; j < dims[1]; j++) { m.m_matrix[i][j] = Math.exp(m_matrix[i][j] / n); } return m; } public void dotProduct(Matrix matrix) { Matrix2 matrix2 = (Matrix2) matrix; int[] dims = getDimensions(); int[] dimsm = matrix2.getDimensions(); // dimensions should match for (int i = 0; i < dims.length; i++) assert dimsm[i] == dims[i] : dimsm[i]; for (int i = 0; i < dims[0]; i++) for (int j = 0; j < dims[1]; j++) { m_matrix[i][j] = m_matrix[i][j] * matrix2.m_matrix[i][j]; assert !Double.isNaN(m_matrix[i][j]) : matrix2.m_matrix[i][j]; assert !Double.isInfinite(m_matrix[i][j]) : matrix2.m_matrix[i][j]; } } public void dotProduct(double[] vector, int dim) { assert dim < size() : dim; int[] dims = getDimensions(); assert vector.length == dims[dim] : vector.length; int idx[] = {0, 0}; for (idx[0] = 0; idx[0] < dims[0]; idx[0]++) for (idx[1] = 0; idx[1] < dims[1]; idx[1]++) { double old = m_matrix[idx[0]][idx[1]]; m_matrix[idx[0]][idx[1]] = m_matrix[idx[0]][idx[1]] * vector[idx[dim]]; assert !Double.isNaN(m_matrix[idx[0]][idx[1]]); assert !Double.isInfinite(m_matrix[idx[0]][idx[1]]); } } public void dotQuotient(double[] vector, int dim) { assert dim < size() : dim; int[] dims = getDimensions(); assert vector.length == dims[dim] : vector.length; int idx[] = {0, 0}; for (idx[0] = 0; idx[0] < dims[0]; idx[0]++) for (idx[1] = 0; idx[1] < dims[1]; idx[1]++) { m_matrix[idx[0]][idx[1]] = m_matrix[idx[0]][idx[1]] / vector[idx[dim]]; assert vector[idx[dim]] != 0; assert !Double.isNaN(m_matrix[idx[0]][idx[1]]); assert !Double.isInfinite(m_matrix[idx[0]][idx[1]]); } } public double[] marginalize(int dim, boolean bMaximize) { assert dim < size() : dim; // Method sumOrMax = MathUtils.getSumOrMax(bMaximize); int[] dims = getDimensions(); double[] margin = new double[dims[dim]]; // assume positive potentials - ? compare with learning results Arrays.fill(margin, 0); try { int idx[] = {0, 0}; for (idx[0] = 0; idx[0] < dims[0]; idx[0]++) for (idx[1] = 0; idx[1] < dims[1]; idx[1]++) { /* Object[] params = {new Double(margin[idx[dim]]), new Double(m_matrix[idx[0]][idx[1]])}; margin[idx[dim]] = ((Double) sumOrMax.invoke(null, params)).doubleValue(); */ if (bMaximize) margin[idx[dim]] = Math.max(margin[idx[dim]], m_matrix[idx[0]][idx[1]]); else margin[idx[dim]] += m_matrix[idx[0]][idx[1]]; assert !Double.isNaN(margin[idx[dim]]); assert !Double.isInfinite(margin[idx[dim]]); } } catch (Exception e) { System.err.println(e); System.exit(1); } return margin; } public String toString() { String strRes = new String(); for (int i = 0; i < m_matrix.length; i++) { for (int j = 0; j < m_matrix[i].length; j++) strRes += String.valueOf(m_matrix[i][j]) + " "; strRes += "\n"; } return strRes; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -