📄 e1000_82571.c
字号:
E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC; E1000_WRITE_REG(hw, E1000_TXDCTL1, reg_data); } else { e1000_enable_tx_pkt_filtering(hw); reg_data = E1000_READ_REG(hw, E1000_GCR); reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; E1000_WRITE_REG(hw, E1000_GCR, reg_data); } /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ e1000_clear_hw_cntrs_82571(hw);out: return ret_val;}/** * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits * @hw: pointer to the HW structure * * Initializes required hardware-dependent bits needed for normal operation. **/static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw){ u32 reg; DEBUGFUNC("e1000_initialize_hw_bits_82571"); if (hw->mac.disable_hw_init_bits) goto out; /* Transmit Descriptor Control 0 */ reg = E1000_READ_REG(hw, E1000_TXDCTL); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL, reg); /* Transmit Descriptor Control 1 */ reg = E1000_READ_REG(hw, E1000_TXDCTL1); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_TXDCTL1, reg); /* Transmit Arbitration Control 0 */ reg = E1000_READ_REG(hw, E1000_TARC0); reg &= ~(0xF << 27); /* 30:27 */ switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); break; default: break; } E1000_WRITE_REG(hw, E1000_TARC0, reg); /* Transmit Arbitration Control 1 */ reg = E1000_READ_REG(hw, E1000_TARC1); switch (hw->mac.type) { case e1000_82571: case e1000_82572: reg &= ~((1 << 29) | (1 << 30)); reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR) reg &= ~(1 << 28); else reg |= (1 << 28); E1000_WRITE_REG(hw, E1000_TARC1, reg); break; default: break; } /* Device Control */ if (hw->mac.type == e1000_82573) { reg = E1000_READ_REG(hw, E1000_CTRL); reg &= ~(1 << 29); E1000_WRITE_REG(hw, E1000_CTRL, reg); } /* Extended Device Control */ if (hw->mac.type == e1000_82573) { reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg &= ~(1 << 23); reg |= (1 << 22); E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); }out: return;}/** * e1000_clear_vfta_82571 - Clear VLAN filter table * @hw: pointer to the HW structure * * Clears the register array which contains the VLAN filter table by * setting all the values to 0. **/static void e1000_clear_vfta_82571(struct e1000_hw *hw){ u32 offset; u32 vfta_value = 0; u32 vfta_offset = 0; u32 vfta_bit_in_reg = 0; DEBUGFUNC("e1000_clear_vfta_82571"); if (hw->mac.type == e1000_82573) { if (hw->mng_cookie.vlan_id != 0) { /* The VFTA is a 4096b bit-field, each identifying * a single VLAN ID. The following operations * determine which 32b entry (i.e. offset) into the * array we want to set the VLAN ID (i.e. bit) of * the manageability unit. */ vfta_offset = (hw->mng_cookie.vlan_id >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK; vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK); } } for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { /* If the offset we want to clear is the same offset of the * manageability VLAN ID, then clear all bits except that of * the manageability unit. */ vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); E1000_WRITE_FLUSH(hw); }}/** * e1000_mc_addr_list_update_82571 - Update Multicast addresses * @hw: pointer to the HW structure * @mc_addr_list: array of multicast addresses to program * @mc_addr_count: number of multicast addresses to program * @rar_used_count: the first RAR register free to program * @rar_count: total number of supported Receive Address Registers * * Updates the Receive Address Registers and Multicast Table Array. * The caller must have a packed mc_addr_list of multicast addresses. * The parameter rar_count will usually be hw->mac.rar_entry_count * unless there are workarounds that change this. **/static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, u8 *mc_addr_list, u32 mc_addr_count, u32 rar_used_count, u32 rar_count){ DEBUGFUNC("e1000_mc_addr_list_update_82571"); if (e1000_get_laa_state_82571(hw)) rar_count--; e1000_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count, rar_used_count, rar_count);}/** * e1000_setup_link_82571 - Setup flow control and link settings * @hw: pointer to the HW structure * * Determines which flow control settings to use, then configures flow * control. Calls the appropriate media-specific link configuration * function. Assuming the adapter has a valid link partner, a valid link * should be established. Assumes the hardware has previously been reset * and the transmitter and receiver are not enabled. **/static s32 e1000_setup_link_82571(struct e1000_hw *hw){ DEBUGFUNC("e1000_setup_link_82571"); /* 82573 does not have a word in the NVM to determine * the default flow control setting, so we explicitly * set it to full. */ if (hw->mac.type == e1000_82573) hw->mac.fc = e1000_fc_full; return e1000_setup_link_generic(hw);}/** * e1000_setup_copper_link_82571 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. **/static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw){ u32 ctrl, led_ctrl; s32 ret_val; DEBUGFUNC("e1000_setup_copper_link_82571"); ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); E1000_WRITE_REG(hw, E1000_CTRL, ctrl); switch (hw->phy.type) { case e1000_phy_m88: ret_val = e1000_copper_link_setup_m88(hw); break; case e1000_phy_igp_2: ret_val = e1000_copper_link_setup_igp(hw); /* Setup activity LED */ led_ctrl = E1000_READ_REG(hw, E1000_LEDCTL); led_ctrl &= IGP_ACTIVITY_LED_MASK; led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); E1000_WRITE_REG(hw, E1000_LEDCTL, led_ctrl); break; default: ret_val = -E1000_ERR_PHY; break; } if (ret_val) goto out; ret_val = e1000_setup_copper_link_generic(hw);out: return ret_val;}/** * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes * @hw: pointer to the HW structure * * Configures collision distance and flow control for fiber and serdes links. * Upon successful setup, poll for link. **/static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw){ DEBUGFUNC("e1000_setup_fiber_serdes_link_82571"); switch (hw->mac.type) { case e1000_82571: case e1000_82572: /* If SerDes loopback mode is entered, there is no form * of reset to take the adapter out of that mode. So we * have to explicitly take the adapter out of loopback * mode. This prevents drivers from twidling their thumbs * if another tool failed to take it out of loopback mode. */ E1000_WRITE_REG(hw, E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); break; default: break; } return e1000_setup_fiber_serdes_link_generic(hw);}/** * e1000_valid_led_default_82571 - Verify a valid default LED config * @hw: pointer to the HW structure * @data: pointer to the NVM (EEPROM) * * Read the EEPROM for the current default LED configuration. If the * LED configuration is not valid, set to a valid LED configuration. **/static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data){ s32 ret_val; DEBUGFUNC("e1000_valid_led_default_82571"); ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); if (ret_val) { DEBUGOUT("NVM Read Error\n"); goto out; } if (hw->mac.type == e1000_82573 && *data == ID_LED_RESERVED_F746) *data = ID_LED_DEFAULT_82573; else if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) *data = ID_LED_DEFAULT;out: return ret_val;}/** * e1000_get_laa_state_82571 - Get locally administered address state * @hw: pointer to the HW structure * * Retrieve and return the current locally administed address state. **/boolean_t e1000_get_laa_state_82571(struct e1000_hw *hw){ struct e1000_dev_spec_82571 *dev_spec; boolean_t state = FALSE; DEBUGFUNC("e1000_get_laa_state_82571"); if (hw->mac.type != e1000_82571) goto out; dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec; state = dev_spec->laa_is_present;out: return state;}/** * e1000_set_laa_state_82571 - Set locally administered address state * @hw: pointer to the HW structure * @state: enable/disable locally administered address * * Enable/Disable the current locally administed address state. **/void e1000_set_laa_state_82571(struct e1000_hw *hw, boolean_t state){ struct e1000_dev_spec_82571 *dev_spec; DEBUGFUNC("e1000_set_laa_state_82571"); if (hw->mac.type != e1000_82571) goto out; dev_spec = (struct e1000_dev_spec_82571 *)hw->dev_spec; dev_spec->laa_is_present = state; /* If workaround is activated... */ if (state == TRUE) { /* Hold a copy of the LAA in RAR[14] This is done so that * between the time RAR[0] gets clobbered and the time it * gets fixed, the actual LAA is in one of the RARs and no * incoming packets directed to this port are dropped. * Eventually the LAA will be in RAR[0] and RAR[14]. */ e1000_rar_set_generic(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); }out: return;}/** * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum * @hw: pointer to the HW structure * * Verifies that the EEPROM has completed the update. After updating the * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If * the checksum fix is not implemented, we need to set the bit and update * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect, * we need to return bad checksum. **/static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw){ struct e1000_nvm_info *nvm = &hw->nvm; s32 ret_val = E1000_SUCCESS; u16 data; DEBUGFUNC("e1000_fix_nvm_checksum_82571"); if (nvm->type != e1000_nvm_flash_hw) goto out; /* Check bit 4 of word 10h. If it is 0, firmware is done updating * 10h-12h. Checksum may need to be fixed. */ ret_val = e1000_read_nvm(hw, 0x10, 1, &data); if (ret_val) goto out; if (!(data & 0x10)) { /* Read 0x23 and check bit 15. This bit is a 1 * when the checksum has already been fixed. If * the checksum is still wrong and this bit is a * 1, we need to return bad checksum. Otherwise, * we need to set this bit to a 1 and update the * checksum. */ ret_val = e1000_read_nvm(hw, 0x23, 1, &data); if (ret_val) goto out; if (!(data & 0x8000)) { data |= 0x8000; ret_val = e1000_write_nvm(hw, 0x23, 1, &data); if (ret_val) goto out; ret_val = e1000_update_nvm_checksum(hw); } }out: return ret_val;}/** * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw){ volatile u32 temp; DEBUGFUNC("e1000_clear_hw_cntrs_82571"); e1000_clear_hw_cntrs_base_generic(hw); temp = E1000_READ_REG(hw, E1000_PRC64); temp = E1000_READ_REG(hw, E1000_PRC127); temp = E1000_READ_REG(hw, E1000_PRC255); temp = E1000_READ_REG(hw, E1000_PRC511); temp = E1000_READ_REG(hw, E1000_PRC1023); temp = E1000_READ_REG(hw, E1000_PRC1522); temp = E1000_READ_REG(hw, E1000_PTC64); temp = E1000_READ_REG(hw, E1000_PTC127); temp = E1000_READ_REG(hw, E1000_PTC255); temp = E1000_READ_REG(hw, E1000_PTC511); temp = E1000_READ_REG(hw, E1000_PTC1023); temp = E1000_READ_REG(hw, E1000_PTC1522); temp = E1000_READ_REG(hw, E1000_ALGNERRC); temp = E1000_READ_REG(hw, E1000_RXERRC); temp = E1000_READ_REG(hw, E1000_TNCRS); temp = E1000_READ_REG(hw, E1000_CEXTERR); temp = E1000_READ_REG(hw, E1000_TSCTC); temp = E1000_READ_REG(hw, E1000_TSCTFC); temp = E1000_READ_REG(hw, E1000_MGTPRC); temp = E1000_READ_REG(hw, E1000_MGTPDC); temp = E1000_READ_REG(hw, E1000_MGTPTC); temp = E1000_READ_REG(hw, E1000_IAC); temp = E1000_READ_REG(hw, E1000_ICRXOC); temp = E1000_READ_REG(hw, E1000_ICRXPTC); temp = E1000_READ_REG(hw, E1000_ICRXATC); temp = E1000_READ_REG(hw, E1000_ICTXPTC); temp = E1000_READ_REG(hw, E1000_ICTXATC); temp = E1000_READ_REG(hw, E1000_ICTXQEC); temp = E1000_READ_REG(hw, E1000_ICTXQMTC); temp = E1000_READ_REG(hw, E1000_ICRXDMTC);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -