📄 smartsopc_board_cyclone_1c6.v
字号:
({32 {~cpu_0_instruction_master_read_data_valid_firmware_ROM_s1}} | firmware_ROM_s1_readdata_from_sa) &
({32 {~cpu_0_instruction_master_read_data_valid_payload_buffer_s1}} | {payload_buffer_s1_readdata_from_sa,
dbs_latent_16_reg_segment_0}) &
({32 {~cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1}} | {incoming_tri_state_bridge_0_data,
dbs_latent_16_reg_segment_0}) &
({32 {~cpu_0_instruction_master_read_data_valid_cfi_flash_1_s1}} | {incoming_tri_state_bridge_0_data,
dbs_latent_16_reg_segment_0});
//actual waitrequest port, which is an e_assign
assign cpu_0_instruction_master_waitrequest = ~cpu_0_instruction_master_run;
//latent max counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_latency_counter <= 0;
else if (1)
cpu_0_instruction_master_latency_counter <= p1_cpu_0_instruction_master_latency_counter;
end
//latency counter load mux, which is an e_mux
assign p1_cpu_0_instruction_master_latency_counter = ((cpu_0_instruction_master_run & cpu_0_instruction_master_read))? latency_load_value :
(cpu_0_instruction_master_latency_counter)? cpu_0_instruction_master_latency_counter - 1 :
0;
//read latency load values, which is an e_mux
assign latency_load_value = ({2 {cpu_0_instruction_master_requests_data_RAM_s1}} & 1) |
({2 {cpu_0_instruction_master_requests_firmware_ROM_s1}} & 1) |
({2 {cpu_0_instruction_master_requests_payload_buffer_s1}} & 1) |
({2 {cpu_0_instruction_master_requests_cfi_flash_0_s1}} & 2) |
({2 {cpu_0_instruction_master_requests_cfi_flash_1_s1}} & 2);
//input to latent dbs-16 stored 0, which is an e_mux
assign p1_dbs_latent_16_reg_segment_0 = (cpu_0_instruction_master_read_data_valid_payload_buffer_s1)? payload_buffer_s1_readdata_from_sa :
(cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1)? incoming_tri_state_bridge_0_data :
incoming_tri_state_bridge_0_data;
//dbs register for latent dbs-16 segment 0, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
dbs_latent_16_reg_segment_0 <= 0;
else if (dbs_rdv_count_enable & ((cpu_0_instruction_master_dbs_rdv_counter[1]) == 0))
dbs_latent_16_reg_segment_0 <= p1_dbs_latent_16_reg_segment_0;
end
//dbs count increment, which is an e_mux
assign cpu_0_instruction_master_dbs_increment = (cpu_0_instruction_master_requests_payload_buffer_s1)? 2 :
(cpu_0_instruction_master_requests_cfi_flash_0_s1)? 2 :
(cpu_0_instruction_master_requests_cfi_flash_1_s1)? 2 :
0;
//dbs counter overflow, which is an e_assign
assign dbs_counter_overflow = cpu_0_instruction_master_dbs_address[1] & !(next_dbs_address[1]);
//next master address, which is an e_assign
assign next_dbs_address = cpu_0_instruction_master_dbs_address + cpu_0_instruction_master_dbs_increment;
//dbs count enable, which is an e_mux
assign dbs_count_enable = pre_dbs_count_enable;
//dbs counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_dbs_address <= 0;
else if (dbs_count_enable)
cpu_0_instruction_master_dbs_address <= next_dbs_address;
end
//p1 dbs rdv counter, which is an e_assign
assign cpu_0_instruction_master_next_dbs_rdv_counter = cpu_0_instruction_master_dbs_rdv_counter + cpu_0_instruction_master_dbs_rdv_counter_inc;
//cpu_0_instruction_master_rdv_inc_mux, which is an e_mux
assign cpu_0_instruction_master_dbs_rdv_counter_inc = (cpu_0_instruction_master_read_data_valid_payload_buffer_s1)? 2 :
(cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1)? 2 :
2;
//master any slave rdv, which is an e_mux
assign dbs_rdv_count_enable = cpu_0_instruction_master_read_data_valid_payload_buffer_s1 |
cpu_0_instruction_master_read_data_valid_cfi_flash_0_s1 |
cpu_0_instruction_master_read_data_valid_cfi_flash_1_s1;
//dbs rdv counter, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_dbs_rdv_counter <= 0;
else if (dbs_rdv_count_enable)
cpu_0_instruction_master_dbs_rdv_counter <= cpu_0_instruction_master_next_dbs_rdv_counter;
end
//dbs rdv counter overflow, which is an e_assign
assign dbs_rdv_counter_overflow = cpu_0_instruction_master_dbs_rdv_counter[1] & ~cpu_0_instruction_master_next_dbs_rdv_counter[1];
//pre dbs count enable, which is an e_mux
assign pre_dbs_count_enable = (cpu_0_instruction_master_granted_payload_buffer_s1 & cpu_0_instruction_master_read & 1 & 1) |
((cpu_0_instruction_master_granted_cfi_flash_0_s1 & cpu_0_instruction_master_read & 1 & 1 & ({cfi_flash_0_s1_wait_counter_eq_0 & ~d1_tri_state_bridge_0_avalon_slave_end_xfer}))) |
((cpu_0_instruction_master_granted_cfi_flash_1_s1 & cpu_0_instruction_master_read & 1 & 1 & ({cfi_flash_1_s1_wait_counter_eq_0 & ~d1_tri_state_bridge_0_avalon_slave_end_xfer})));
//synthesis translate_off
//////////////// SIMULATION-ONLY CONTENTS
//cpu_0_instruction_master_address check against wait, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_address_last_time <= 0;
else if (1)
cpu_0_instruction_master_address_last_time <= cpu_0_instruction_master_address;
end
//cpu_0/instruction_master waited last time, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
active_and_waiting_last_time <= 0;
else if (1)
active_and_waiting_last_time <= cpu_0_instruction_master_waitrequest & (cpu_0_instruction_master_read);
end
//cpu_0_instruction_master_address matches last port_name, which is an e_process
always @(active_and_waiting_last_time or cpu_0_instruction_master_address or cpu_0_instruction_master_address_last_time)
begin
if (active_and_waiting_last_time & (cpu_0_instruction_master_address != cpu_0_instruction_master_address_last_time))
begin
$write("%0d ns: cpu_0_instruction_master_address did not heed wait!!!", $time);
$stop;
end
end
//cpu_0_instruction_master_read check against wait, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
cpu_0_instruction_master_read_last_time <= 0;
else if (1)
cpu_0_instruction_master_read_last_time <= cpu_0_instruction_master_read;
end
//cpu_0_instruction_master_read matches last port_name, which is an e_process
always @(active_and_waiting_last_time or cpu_0_instruction_master_read or cpu_0_instruction_master_read_last_time)
begin
if (active_and_waiting_last_time & (cpu_0_instruction_master_read != cpu_0_instruction_master_read_last_time))
begin
$write("%0d ns: cpu_0_instruction_master_read did not heed wait!!!", $time);
$stop;
end
end
//////////////// END SIMULATION-ONLY CONTENTS
//synthesis translate_on
// synthesis attribute cpu_0_instruction_master_arbitrator auto_dissolve FALSE
endmodule
module data_RAM_s1_arbitrator (
// inputs:
clk,
cpu_0_data_master_address_to_slave,
cpu_0_data_master_byteenable,
cpu_0_data_master_read,
cpu_0_data_master_waitrequest,
cpu_0_data_master_write,
cpu_0_data_master_writedata,
cpu_0_instruction_master_address_to_slave,
cpu_0_instruction_master_latency_counter,
cpu_0_instruction_master_read,
data_RAM_s1_readdata,
reset_n,
// outputs:
cpu_0_data_master_granted_data_RAM_s1,
cpu_0_data_master_qualified_request_data_RAM_s1,
cpu_0_data_master_read_data_valid_data_RAM_s1,
cpu_0_data_master_requests_data_RAM_s1,
cpu_0_instruction_master_granted_data_RAM_s1,
cpu_0_instruction_master_qualified_request_data_RAM_s1,
cpu_0_instruction_master_read_data_valid_data_RAM_s1,
cpu_0_instruction_master_requests_data_RAM_s1,
d1_data_RAM_s1_end_xfer,
data_RAM_s1_address,
data_RAM_s1_byteenable,
data_RAM_s1_chipselect,
data_RAM_s1_clken,
data_RAM_s1_readdata_from_sa,
data_RAM_s1_write,
data_RAM_s1_writedata,
registered_cpu_0_data_master_read_data_valid_data_RAM_s1
);
output cpu_0_data_master_granted_data_RAM_s1;
output cpu_0_data_master_qualified_request_data_RAM_s1;
output cpu_0_data_master_read_data_valid_data_RAM_s1;
output
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -