⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 itkfemimagemetricload.h

📁 InsightToolkit-1.4.0(有大量的优化算法程序)
💻 H
字号:
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit (ITK)
  Module:    $RCSfile: itkFEMImageMetricLoad.h,v $ Language:  C++
  Date:      $Date: 2003/08/07 18:56:56 $
  Version:   $Revision: 1.23 $

Copyright (c) 2001 Insight Consortium
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

 * The name of the Insight Consortium, nor the names of any consortium members,
   nor of any contributors, may be used to endorse or promote products derived
   from this software without specific prior written permission.

  * Modified source versions must be plainly marked as such, and must not be
    misrepresented as being the original software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

=========================================================================*/
#ifndef _itkFEMImageMetricLoad_h_
#define _itkFEMImageMetricLoad_h_

#include "itkFEMLoadElementBase.h"

#include "itkImage.h"
#include "itkTranslationTransform.h"

#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkDerivativeOperator.h"
#include "itkForwardDifferenceOperator.h"
#include "itkLinearInterpolateImageFunction.h"
#include "vnl/vnl_math.h"

#include <itkMutualInformationImageToImageMetric.h>
#include <itkMattesMutualInformationImageToImageMetric.h>
#include <itkMeanSquaresImageToImageMetric.h>
#include <itkNormalizedCorrelationImageToImageMetric.h>
//#include <itkMeanReciprocalSquareDifferenceImageToImageMetric.h>


namespace itk 
{
namespace fem
{

/**
 * \class ImageMetricLoad
 * \brief General image pair load that uses the itkImageToImageMetrics.
 *
 * LoadImageMetric computes FEM gravity loads by using derivatives provided 
 * by itkImageToImageMetrics (e.g. mean squares intensity difference.)
 * The function responsible for this is called Fg, as required by the FEMLoad
 * standards.  It takes a vnl_vector as input.
 * We assume the vector input is of size 2*ImageDimension.
 * The 0 to ImageDimension-1 elements contain the position, p,
 * in the reference (moving) image.  The next ImageDimension to 2*ImageDimension-1
 * elements contain the value of the vector field at that point, v(p).
 *
 * Then, we evaluate the derivative at the point p+v(p) with respect to
 * some region of the target (fixed) image by calling the metric with 
 * the translation parameters as provided by the vector field at p.
 * The metrics return both a scalar similarity value and vector-valued derivative.  
 * The derivative is what gives us the force to drive the FEM registration.
 * These values are computed with respect to some region in the Fixed image.
 * This region size may be set by the user by calling SetMetricRadius.
 * As the metric derivative computation evolves, performance should improve
 * and more functionality will be available (such as scale selection).
 */ 
template<class TMoving,class TFixed> 
class ImageMetricLoad : public LoadElement
{
FEM_CLASS(ImageMetricLoad,LoadElement)
public:

// Necessary typedefs for dealing with images BEGIN
  typedef typename LoadElement::Float Float;

  typedef TMoving MovingType;
  typedef typename MovingType::ConstPointer  MovingConstPointer;
  typedef MovingType*  MovingPointer;
  typedef TFixed       FixedType;
  typedef FixedType*  FixedPointer;
  typedef typename FixedType::ConstPointer  FixedConstPointer;

  /** Dimensionality of input and output data is assumed to be the same. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      MovingType::ImageDimension);

  typedef ImageRegionIteratorWithIndex<MovingType> RefRegionIteratorType; 
  typedef ImageRegionIteratorWithIndex<FixedType>    TarRegionIteratorType; 
  

  typedef NeighborhoodIterator<MovingType> 
                                     MovingNeighborhoodIteratorType; 
  typedef typename MovingNeighborhoodIteratorType::IndexType  
                                     MovingNeighborhoodIndexType;
  typedef typename MovingNeighborhoodIteratorType::RadiusType 
                                     MovingRadiusType;
  typedef NeighborhoodIterator<FixedType> 
                                     FixedNeighborhoodIteratorType; 
  typedef typename FixedNeighborhoodIteratorType::IndexType  
                                     FixedNeighborhoodIndexType;
  typedef typename FixedNeighborhoodIteratorType::RadiusType 
                                     FixedRadiusType;


// IMAGE DATA
  typedef   typename  MovingType::PixelType RefPixelType;
  typedef   typename  FixedType::PixelType    TarPixelType;
  typedef   Float PixelType;
  typedef   Float ComputationType;
  typedef   Image< RefPixelType, itkGetStaticConstMacro(ImageDimension) >       RefImageType;
  typedef   Image< TarPixelType, itkGetStaticConstMacro(ImageDimension) >       TarImageType;
  typedef   Image< PixelType, itkGetStaticConstMacro(ImageDimension) >            ImageType;
  typedef   vnl_vector<Float>                             VectorType;

// Necessary typedefs for dealing with images END
 
//------------------------------------------------------------
// Set up the metrics
//------------------------------------------------------------
  typedef double                   CoordinateRepresentationType;
  typedef Transform< CoordinateRepresentationType,itkGetStaticConstMacro(ImageDimension), itkGetStaticConstMacro(ImageDimension) > TransformBaseType;
  typedef TranslationTransform<CoordinateRepresentationType,  itkGetStaticConstMacro(ImageDimension) >  DefaultTransformType;

 /**  Type of supported metrics. */
  typedef   ImageToImageMetric<FixedType,MovingType > MetricBaseType;
  typedef typename MetricBaseType::Pointer             MetricBaseTypePointer;

  typedef   MutualInformationImageToImageMetric<  MovingType, FixedType   > MutualInformationMetricType;

  typedef   MeanSquaresImageToImageMetric< MovingType, FixedType   > MeanSquaresMetricType;

  typedef   NormalizedCorrelationImageToImageMetric< MovingType, FixedType  > NormalizedCorrelationMetricType;

//  typedef   MeanReciprocalSquareDifferenceImageToImageMetric<  ReferenceType, TargetType   > MeanReciprocalSquaresMetricType;

//  typedef  MutualInformationMetricType             DefaultMetricType;
//  typedef  NormalizedCorrelationMetricType             DefaultMetricType;
//  typedef  MeanReciprocalSquaresMetricType             DefaultMetricType;
  typedef  MeanSquaresMetricType             DefaultMetricType;
  typedef typename DefaultTransformType::ParametersType         ParametersType;
  typedef typename DefaultTransformType::JacobianType           JacobianType;


//------------------------------------------------------------
// Set up an Interpolator
//------------------------------------------------------------
  typedef LinearInterpolateImageFunction< MovingType, double > InterpolatorType;

  /** Gradient filtering */
  typedef float RealType;
  typedef CovariantVector<RealType,
          itkGetStaticConstMacro(ImageDimension)> GradientPixelType;
  typedef Image<GradientPixelType,
               itkGetStaticConstMacro(ImageDimension)> GradientImageType;
  typedef SmartPointer<GradientImageType>     GradientImagePointer;
  typedef GradientRecursiveGaussianImageFilter< ImageType,
                                                GradientImageType >
          GradientImageFilterType;  
  //  typedef typename GradientImageFilterType::Pointer GradientImageFilterPointer;


// FUNCTIONS

  /** Set/Get the Metric.  */
  void SetMetric(MetricBaseTypePointer MP) { m_Metric=MP; }; 
  
 /** Define the reference (moving) image. */
  void SetMovingImage(MovingType* R)
  { 
    m_RefImage = R; 
    m_RefSize=m_RefImage->GetLargestPossibleRegion().GetSize();
  };

  void SetMetricMovingImage(MovingType* R)  
  { 
    m_Metric->SetMovingImage( R ); 
    m_RefSize=R->GetLargestPossibleRegion().GetSize(); 
  };

  /** Define the target (fixed) image. */ 
  void SetFixedImage(FixedType* T)
  { 
     m_TarImage=T; 
     m_TarSize=T->GetLargestPossibleRegion().GetSize(); 
  };
  void SetMetricFixedImage(FixedType* T)  
  { 
    m_Metric->SetFixedImage( T ) ; 
    m_TarSize=T->GetLargestPossibleRegion().GetSize(); 
  };


  MovingPointer GetMovingImage() { return m_RefImage; };
  FixedPointer GetFixedImage() { return m_TarImage; };

  /** Define the metric region size. */ 
  void SetMetricRadius(MovingRadiusType T) {m_MetricRadius  = T; };    
  /** Get the metric region size. */ 
  MovingRadiusType GetMetricRadius() { return m_MetricRadius; };       
  
  /** Set/Get methods for the number of integration points to use 
    * in each 1-dimensional line integral when evaluating the load.
    * This value is passed to the load implementation.
    */
  void SetNumberOfIntegrationPoints(unsigned int i){ m_NumberOfIntegrationPoints=i;}
  unsigned int GetNumberOfIntegrationPoints(){ return m_NumberOfIntegrationPoints;}

  /** Set the direction of the gradient (uphill or downhill). 
    * E.g. the mean squares metric should be minimized while NCC and PR should be maximized.
    */ 
  void SetSign(Float s) {m_Sign=s;}
  
  /** Set the sigma in a gaussian measure. */
  void SetTemp(Float s) {m_Temp=s;}


  /** Scaling of the similarity energy term */
  void SetGamma(Float s) {m_Gamma=s;}

  void SetSolution(Solution::ConstPointer ptr) {  m_Solution=ptr; }
  Solution::ConstPointer GetSolution() {  return m_Solution; }

  /**
   *  This method returns the total metric evaluated over the image with respect to the current solution.
   */
  Float GetMetric (VectorType  InVec);
  VectorType GetPolynomialFitToMetric(VectorType PositionInElement, VectorType SolutionAtPosition);

  VectorType MetricFiniteDiff(VectorType PositionInElement, VectorType SolutionAtPosition);

  // FIXME - WE ASSUME THE 2ND VECTOR (INDEX 1) HAS THE INFORMATION WE WANT
  Float GetSolution(unsigned int i,unsigned int which=0)
  {  
    return m_Solution->GetSolutionValue(i,which); 
  }
  
// define the copy constructor 
//  ImageMetricLoad(const ImageMetricLoad& LMS);

  void InitializeMetric(void);
  ImageMetricLoad(); // cannot be private until we always use smart pointers
  Float EvaluateMetricGivenSolution ( Element::ArrayType* el, Float step=1.0);
 
/**
 * Compute the image based load - implemented with ITK metric derivatives.
 */
  VectorType Fe1(VectorType);
  VectorType Fe(VectorType,VectorType);
 
  static Baseclass* NewImageMetricLoad(void)
  { return new ImageMetricLoad; }


  /** Set/Get the metric gradient image */
  //void InitializeGradientImage();
  void SetMetricGradientImage(GradientImageType* g) { m_MetricGradientImage=g;}
  GradientImageType* GetMetricGradientImage() { return  m_MetricGradientImage;}


  void PrintCurrentEnergy(){ std:: cout << " energy " << m_Energy << std::endl;}
  double GetCurrentEnergy() { return m_Energy; }
  void  SetCurrentEnergy( double e ) { m_Energy=e; }

protected:


private:
  GradientImageType*                                  m_MetricGradientImage;
  MovingPointer                                    m_RefImage;
  FixedPointer                                       m_TarImage;
  MovingRadiusType                                 m_MetricRadius; /** used by the metric to set region size for fixed image*/ 
  typename MovingType::SizeType                    m_RefSize;
  typename FixedType::SizeType                       m_TarSize;
  unsigned int                                        m_NumberOfIntegrationPoints;
  unsigned int                                        m_SolutionIndex;
  unsigned int                                        m_SolutionIndex2;
  Float                                               m_Sign;
  Float                                               m_Temp;
  Float                                               m_Gamma;

  typename Solution::ConstPointer                     m_Solution;
  MetricBaseTypePointer                               m_Metric;
  typename TransformBaseType::Pointer                 m_Transform;
  typename InterpolatorType::Pointer                  m_Interpolator;

  mutable double                  m_Energy;
private:
  /** Dummy static int that enables automatic registration
      with FEMObjectFactory. */
  static const int DummyCLID;

};




}} // end namespace fem/itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFEMImageMetricLoad.txx"
#endif

#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -