📄 itkcovariancecalculator.txx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCovarianceCalculator.txx,v $
Language: C++
Date: $Date: 2003/09/10 14:29:44 $
Version: $Revision: 1.16 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCovarianceCalculator_txx
#define __itkCovarianceCalculator_txx
namespace itk{
namespace Statistics{
template< class TSample >
CovarianceCalculator< TSample >
::CovarianceCalculator()
{
m_Mean = 0 ;
m_InternalMean = 0 ;
}
template< class TSample >
CovarianceCalculator< TSample >
::~CovarianceCalculator()
{
if ( m_InternalMean != 0 )
{
delete m_InternalMean ;
m_InternalMean = 0 ;
}
}
template< class TSample >
void
CovarianceCalculator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Output: " << m_Output << std::endl;
if ( m_Mean != 0)
{
os << indent << "Mean: [" << *m_Mean << "]" << std::endl ;
}
else
{
os << indent << "Mean: not set" << std::endl ;
}
if ( m_InternalMean != 0)
{
os << indent << "Internal Mean: [" << *m_InternalMean << "]" << std::endl ;
}
else
{
os << indent << "Internal Mean: not used" << std::endl ;
}
}
template< class TSample >
void
CovarianceCalculator< TSample >
::SetMean(MeanType* mean)
{
if ( m_InternalMean != mean && m_InternalMean != 0 )
{
delete m_InternalMean ;
m_InternalMean = 0 ;
}
m_Mean = mean ;
}
template< class TSample >
typename CovarianceCalculator< TSample >::MeanType*
CovarianceCalculator< TSample >
::GetMean()
{
if ( m_InternalMean != 0 )
{
return m_InternalMean ;
}
else
{
return m_Mean ;
}
}
template< class TSample >
typename CovarianceCalculator< TSample >::OutputType*
CovarianceCalculator< TSample >
::GetOutput()
{
return &m_Output ;
}
template< class TSample >
inline void
CovarianceCalculator< TSample >
::ComputeCovarianceWithGivenMean()
{
m_Output.Fill(0.0) ;
double frequency ;
double totalFrequency = 0.0 ;
unsigned int row, col ;
unsigned int i ;
typename TSample::Iterator iter = this->GetInputSample()->Begin() ;
typename TSample::Iterator end = this->GetInputSample()->End() ;
MeanType diff ;
typename TSample::MeasurementVectorType measurements ;
// fills the lower triangle and the diagonal cells in the covariance matrix
while (iter != end)
{
frequency = iter.GetFrequency() ;
totalFrequency += frequency ;
measurements = iter.GetMeasurementVector() ;
for (i = 0 ; i < MeasurementVectorSize ; i++)
{
diff[i] = measurements[i] - (*m_Mean)[i] ;
}
for ( row = 0; row < MeasurementVectorSize ; row++)
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output.GetVnlMatrix()(row,col) += frequency * diff[row] * diff[col] ;
}
}
++iter ;
}
// fills the upper triangle using the lower triangle
for (row = 1 ; row < MeasurementVectorSize ; row++)
{
for (col = 0 ; col < row ; col++)
{
m_Output.GetVnlMatrix()(col, row) =
m_Output.GetVnlMatrix()(row, col) ;
}
}
m_Output.GetVnlMatrix() /= (totalFrequency - 1.0f);
}
template< class TSample >
inline void
CovarianceCalculator< TSample >
::ComputeCovarianceWithoutGivenMean()
{
m_Output.Fill(0.0) ;
m_InternalMean->Fill(0.0) ;
double frequency ;
double totalFrequency = 0.0 ;
unsigned int row, col ;
unsigned int i ;
typename TSample::Iterator iter = this->GetInputSample()->Begin() ;
typename TSample::Iterator end = this->GetInputSample()->End() ;
MeanType diff ;
typename TSample::MeasurementVectorType measurements ;
// fills the lower triangle and the diagonal cells in the covariance matrix
while (iter != end)
{
frequency = iter.GetFrequency() ;
totalFrequency += frequency ;
measurements = iter.GetMeasurementVector() ;
for ( i = 0 ; i < MeasurementVectorSize ; ++i )
{
diff[i] = measurements[i] - (*m_InternalMean)[i] ;
}
// updates the mean vector
double tempWeight = frequency / totalFrequency ;
for ( i = 0 ; i < MeasurementVectorSize ; ++i )
{
(*m_InternalMean)[i] += tempWeight * diff[i] ;
}
// updates the covariance matrix
tempWeight = tempWeight * ( totalFrequency - frequency ) ;
for ( row = 0; row < MeasurementVectorSize ; row++ )
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output.GetVnlMatrix()(row,col) +=
tempWeight * diff[row] * diff[col] ;
}
}
++iter ;
}
// fills the upper triangle using the lower triangle
for (row = 1 ; row < MeasurementVectorSize ; row++)
{
for (col = 0 ; col < row ; col++)
{
m_Output.GetVnlMatrix()(col, row) =
m_Output.GetVnlMatrix()(row, col) ;
}
}
m_Output.GetVnlMatrix() /= ( totalFrequency - 1.0 ) ;
}
template< class TSample >
inline void
CovarianceCalculator< TSample >
::GenerateData()
{
if ( m_Mean == 0 )
{
m_InternalMean = new MeanType() ;
this->ComputeCovarianceWithoutGivenMean() ;
}
else
{
this->ComputeCovarianceWithGivenMean() ;
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -