📄 itkkdtreegenerator.txx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkKdTreeGenerator.txx,v $
Language: C++
Date: $Date: 2003/09/10 14:29:46 $
Version: $Revision: 1.13 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkKdTreeGenerator_txx
#define __itkKdTreeGenerator_txx
namespace itk{
namespace Statistics{
template< class TSample >
KdTreeGenerator< TSample >
::KdTreeGenerator()
{
m_SourceSample = 0 ;
m_BucketSize = 16 ;
m_Subsample = SubsampleType::New() ;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Source Sample: " ;
if ( m_SourceSample != 0 )
{
os << m_SourceSample << std::endl ;
}
else
{
os << "not set." << std::endl ;
}
os << indent << "Bucket Size: " << m_BucketSize << std::endl ;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::SetSample(TSample* sample)
{
m_SourceSample = sample ;
m_Subsample->SetSample(sample) ;
m_Subsample->InitializeWithAllInstances() ;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::SetBucketSize(int size)
{
m_BucketSize = size ;
}
template< class TSample >
void
KdTreeGenerator< TSample >
::GenerateData()
{
if ( m_SourceSample == 0 )
{
return ;
}
if ( m_Tree.IsNull() )
{
m_Tree = KdTreeType::New() ;
m_Tree->SetSample(m_SourceSample) ;
m_Tree->SetBucketSize(m_BucketSize) ;
}
MeasurementVectorType lowerBound ;
MeasurementVectorType upperBound ;
for(unsigned int d = 0 ; d < MeasurementVectorSize ; d++)
{
lowerBound[d] = NumericTraits< MeasurementType >::NonpositiveMin() ;
upperBound[d] = NumericTraits< MeasurementType >::max() ;
}
KdTreeNodeType* root =
this->GenerateTreeLoop(0, m_Subsample->Size(), lowerBound, upperBound, 0) ;
m_Tree->SetRoot(root) ;
}
template< class TSample >
inline typename KdTreeGenerator< TSample >::KdTreeNodeType*
KdTreeGenerator< TSample >
::GenerateNonterminalNode(int beginIndex,
int endIndex,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound,
int level)
{
typedef typename KdTreeType::KdTreeNodeType NodeType ;
MeasurementType dimensionLowerBound ;
MeasurementType dimensionUpperBound ;
MeasurementType partitionValue ;
unsigned int partitionDimension = 0 ;
NodeType* left ;
NodeType* right ;
unsigned int i ;
MeasurementType spread ;
MeasurementType maxSpread ;
int medianIndex ;
// find most widely spread dimension
FindSampleBoundAndMean< SubsampleType >(this->GetSubsample(),
beginIndex, endIndex,
m_TempLowerBound, m_TempUpperBound,
m_TempMean) ;
maxSpread = NumericTraits< MeasurementType >::NonpositiveMin() ;
for (i = 0 ; i < MeasurementVectorSize ; i++)
{
spread = m_TempUpperBound[i] - m_TempLowerBound[i] ;
if (spread >= maxSpread)
{
maxSpread = spread ;
partitionDimension = i ;
}
}
// find median and partition this node using the quick select algorithm
medianIndex = (endIndex - beginIndex) / 2 ;
partitionValue =
QuickSelect< SubsampleType >(m_Subsample,
partitionDimension,
beginIndex, endIndex, medianIndex,
m_TempMean[partitionDimension]) ;
medianIndex += beginIndex - 1 ;
// save bounds for cutting dimension
dimensionLowerBound = lowerBound[partitionDimension] ;
dimensionUpperBound = upperBound[partitionDimension] ;
upperBound[partitionDimension] = partitionValue ;
left = GenerateTreeLoop(beginIndex, medianIndex, lowerBound, upperBound, level + 1);
upperBound[partitionDimension] = dimensionUpperBound ;
lowerBound[partitionDimension] = partitionValue ;
right = GenerateTreeLoop(medianIndex, endIndex, lowerBound, upperBound, level + 1) ;
lowerBound[partitionDimension] = dimensionLowerBound ;
return new KdTreeNonterminalNode< TSample >(partitionDimension,
partitionValue,
left,
right) ;
}
template< class TSample >
inline typename KdTreeGenerator< TSample >::KdTreeNodeType*
KdTreeGenerator< TSample >
::GenerateTreeLoop(int beginIndex,
int endIndex,
MeasurementVectorType &lowerBound,
MeasurementVectorType &upperBound,
int level)
{
if (endIndex - beginIndex <= m_BucketSize)
{
// numberOfInstances small, make a terminal node
if (endIndex == beginIndex)
{
// return the pointer to empty terminal node
return m_Tree->GetEmptyTerminalNode() ;
}
else
{
KdTreeTerminalNode< TSample >* ptr =
new KdTreeTerminalNode< TSample >();
for (int j = beginIndex ; j < endIndex ; j++)
{
ptr->AddInstanceIdentifier(m_Subsample->GetInstanceIdentifier(j)) ;
}
// return a terminal node
return ptr ;
}
}
else
{
return this->GenerateNonterminalNode(beginIndex, endIndex,
lowerBound, upperBound, level + 1) ;
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -