📄 itkweightedcovariancecalculator.txx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkWeightedCovarianceCalculator.txx,v $
Language: C++
Date: $Date: 2003/09/10 14:29:48 $
Version: $Revision: 1.11 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkWeightedCovarianceCalculator_txx
#define __itkWeightedCovarianceCalculator_txx
#include "itkWeightedCovarianceCalculator.h"
namespace itk{
namespace Statistics{
template< class TSample >
WeightedCovarianceCalculator< TSample >
::WeightedCovarianceCalculator()
{
m_Output = new OutputType() ;
m_WeightFunction = 0 ;
m_Weights = 0 ;
m_Mean = 0 ;
m_InternalMean = 0 ;
}
template< class TSample >
WeightedCovarianceCalculator< TSample >
::~WeightedCovarianceCalculator()
{
if ( m_InternalMean != 0 )
{
delete m_InternalMean ;
m_InternalMean = 0 ;
m_Mean = 0 ;
}
delete m_Output ;
m_Output = 0 ;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::SetMean(MeanType* mean)
{
if ( m_Mean != mean )
{
if ( m_InternalMean != mean && m_InternalMean != 0 )
{
delete m_InternalMean ;
m_InternalMean = 0 ;
}
m_Mean = mean ;
this->Modified() ;
}
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::MeanType*
WeightedCovarianceCalculator< TSample >
::GetMean()
{
if ( m_InternalMean != 0 )
{
return m_InternalMean ;
}
else
{
return m_Mean ;
}
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::SetWeights(WeightArrayType* array)
{
m_Weights = array ;
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::WeightArrayType*
WeightedCovarianceCalculator< TSample >
::GetWeights()
{
return m_Weights ;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::SetWeightFunction(WeightFunctionType* func)
{
m_WeightFunction = func ;
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::WeightFunctionType*
WeightedCovarianceCalculator< TSample >
::GetWeightFunction()
{
return m_WeightFunction ;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::ComputeCovarianceWithGivenMean()
{
m_Output->GetVnlMatrix().fill(0.0) ;
double weight;
double sumWeight = 0.0 ;
double sumSquaredWeight = 0.0 ;
unsigned int row, col ;
unsigned int i ;
typename TSample::Iterator iter = this->GetInputSample()->Begin() ;
typename TSample::Iterator end = this->GetInputSample()->End() ;
MeanType diff ;
typename TSample::MeasurementVectorType measurements ;
int measurementVectorIndex = 0 ;
// fills the lower triangle and the diagonal cells in the covariance matrix
if (m_WeightFunction != 0)
{
while (iter != end)
{
measurements = iter.GetMeasurementVector() ;
weight = iter.GetFrequency() * m_WeightFunction->Evaluate(measurements) ;
sumWeight += weight ;
sumSquaredWeight += weight * weight ;
for (i = 0 ; i < MeasurementVectorSize ; i++)
{
diff[i] = measurements[i] - (*m_Mean)[i] ;
}
for ( row = 0; row < MeasurementVectorSize ; row++)
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output->GetVnlMatrix()(row,col) +=
weight * diff[row] * diff[col] ;
}
}
++iter ;
}
}
else
{
while (iter != end)
{
measurements = iter.GetMeasurementVector() ;
weight = iter.GetFrequency() * (*m_Weights)[measurementVectorIndex] ;
sumWeight += weight ;
sumSquaredWeight += weight * weight ;
for (i = 0 ; i < MeasurementVectorSize ; i++)
{
diff[i] = measurements[i] - (*m_Mean)[i] ;
}
for ( row = 0; row < MeasurementVectorSize ; row++)
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output->GetVnlMatrix()(row,col) +=
weight * diff[row] * diff[col] ;
}
}
++measurementVectorIndex ;
++iter ;
} // end of while
} // end of if-else
// fills the upper triangle using the lower triangle
for (row = 1 ; row < MeasurementVectorSize ; row++)
{
for (col = 0 ; col < row ; col++)
{
m_Output->GetVnlMatrix()(col, row) =
m_Output->GetVnlMatrix()(row, col) ;
}
}
m_Output->GetVnlMatrix() /=
(sumWeight - (sumSquaredWeight / sumWeight) ) ;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::ComputeCovarianceWithoutGivenMean()
{
m_Output->GetVnlMatrix().fill(0.0) ;
m_InternalMean->Fill(0.0) ;
double weight;
double tempWeight ;
double sumWeight = 0.0 ;
double sumSquaredWeight = 0.0 ;
unsigned int row, col ;
unsigned int i ;
typename TSample::Iterator iter = this->GetInputSample()->Begin() ;
typename TSample::Iterator end = this->GetInputSample()->End() ;
MeanType diff ;
typename TSample::MeasurementVectorType measurements ;
int measurementVectorIndex = 0 ;
// fills the lower triangle and the diagonal cells in the covariance matrix
if (m_WeightFunction != 0)
{
while (iter != end)
{
measurements = iter.GetMeasurementVector() ;
weight =
iter.GetFrequency() * m_WeightFunction->Evaluate(measurements) ;
sumWeight += weight ;
sumSquaredWeight += weight * weight ;
for (i = 0 ; i < MeasurementVectorSize ; i++)
{
diff[i] = measurements[i] - (*m_InternalMean)[i] ;
}
// updates the mean vector
tempWeight = weight / sumWeight ;
for ( i = 0 ; i < MeasurementVectorSize ; ++i )
{
(*m_InternalMean)[i] += tempWeight * diff[i] ;
}
tempWeight = tempWeight * ( sumWeight - weight ) ;
for ( row = 0; row < MeasurementVectorSize ; row++)
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output->GetVnlMatrix()(row,col) +=
tempWeight * diff[row] * diff[col] ;
}
}
++iter ;
}
}
else
{
while (iter != end)
{
weight = iter.GetFrequency() * (*m_Weights)[measurementVectorIndex] ;
sumWeight += weight ;
measurements = iter.GetMeasurementVector() ;
sumSquaredWeight += weight * weight ;
for (i = 0 ; i < MeasurementVectorSize ; i++)
{
diff[i] = measurements[i] - (*m_InternalMean)[i] ;
}
// updates the mean vector
tempWeight = weight / sumWeight ;
for ( i = 0 ; i < MeasurementVectorSize ; ++i )
{
(*m_InternalMean)[i] += tempWeight * diff[i] ;
}
tempWeight = tempWeight * ( sumWeight - weight ) ;
for ( row = 0; row < MeasurementVectorSize ; row++)
{
for ( col = 0; col < row + 1 ; col++)
{
m_Output->GetVnlMatrix()(row,col) +=
tempWeight * diff[row] * diff[col] ;
}
}
++measurementVectorIndex ;
++iter ;
}
}
// fills the upper triangle using the lower triangle
for (row = 1 ; row < MeasurementVectorSize ; row++)
{
for (col = 0 ; col < row ; col++)
{
m_Output->GetVnlMatrix()(col, row) =
m_Output->GetVnlMatrix()(row, col) ;
}
}
m_Output->GetVnlMatrix() /=
(sumWeight - (sumSquaredWeight / sumWeight) ) ;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::GenerateData()
{
if ( m_Mean == 0 )
{
m_InternalMean = new MeanType() ;
this->ComputeCovarianceWithoutGivenMean() ;
}
else
{
this->ComputeCovarianceWithGivenMean() ;
}
}
template< class TSample >
typename WeightedCovarianceCalculator< TSample >::OutputType*
WeightedCovarianceCalculator< TSample >
::GetOutput()
{
return m_Output ;
}
template< class TSample >
void
WeightedCovarianceCalculator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Output: " << m_Output << std::endl;
os << indent << "Weights: " << m_Weights << std::endl;
if ( m_Mean != 0)
{
os << indent << "Mean: [" << *m_Mean << "]" << std::endl ;
}
else
{
os << indent << "Mean: not set" << std::endl ;
}
if ( m_InternalMean != 0)
{
os << indent << "Internal Mean: [" << *m_InternalMean << "]" << std::endl ;
}
else
{
os << indent << "Internal Mean: not used" << std::endl ;
}
}
} // end of namespace Statistics
} // end of namespace itk
#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -