📄 itkquaternionrigidtransformtest.cxx
字号:
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkQuaternionRigidTransformTest.cxx,v $
Language: C++
Date: $Date: 2003/09/10 14:30:10 $
Version: $Revision: 1.5 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <iostream>
#include "itkQuaternionRigidTransform.h"
#include "vnl/vnl_vector_fixed.h"
#include "itkVector.h"
int itkQuaternionRigidTransformTest(int ,char * [] )
{
typedef itk::QuaternionRigidTransform<double> TransformType;
const double epsilon = 1e-10;
const unsigned int N = 3;
bool Ok = true;
/* Create a 3D identity transformation and show its parameters */
{
TransformType::Pointer identityTransform = TransformType::New();
TransformType::OffsetType offset = identityTransform->GetOffset();
std::cout << "Vector from instantiating an identity transform: ";
std::cout << offset << std::endl;
for(unsigned int i=0; i<N; i++)
{
if( fabs( offset[i]-0.0 ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Identity doesn't have a null offset" << std::endl;
return EXIT_FAILURE;
}
}
/* Create a Rigid 3D transform with translation */
{
TransformType::Pointer translation = TransformType::New();
TransformType::OffsetType::ValueType ioffsetInit[3] = {1,4,9};
TransformType::OffsetType ioffset = ioffsetInit;
translation->SetOffset( ioffset );
std::cout << "translation: " << translation;
TransformType::OffsetType offset = translation->GetOffset();
std::cout << "pure Translation test: ";
std::cout << offset << std::endl;
for(unsigned int i=0; i<N; i++)
{
if( fabs( offset[i]- ioffset[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Get Offset differs from SetOffset value " << std::endl;
return EXIT_FAILURE;
}
{
// Translate an itk::Point
TransformType::InputPointType::ValueType pInit[3] = {10,10,10};
TransformType::InputPointType p = pInit;
TransformType::InputPointType q;
q = p + ioffset;
TransformType::OutputPointType r;
r = translation->TransformPoint( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating point: " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::Point " << std::endl;
}
}
{
// Translate an itk::Vector
TransformType::InputVectorType::ValueType pInit[3] = {10,10,10};
TransformType::InputVectorType p = pInit;
TransformType::OutputVectorType q;
q = translation->TransformVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- p[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating vector: " << p << std::endl;
std::cerr << "Reported Result is : " << q << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::Vector " << std::endl;
}
}
{
// Translate an itk::CovariantVector
TransformType::InputCovariantVectorType::ValueType pInit[3] = {10,10,10};
TransformType::InputCovariantVectorType p = pInit;
TransformType::OutputCovariantVectorType q;
q = translation->TransformCovariantVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- p[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating covariant vector: " << p << std::endl;
std::cerr << "Reported Result is : " << q << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::CovariantVector " << std::endl;
}
}
{
// Translate a vnl_vector
TransformType::InputVnlVectorType p;
p[0] = 11;
p[1] = 7;
p[2] = 15;
TransformType::OutputVnlVectorType q;
q = translation->TransformVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - p[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating vnl_vector: " << p << std::endl;
std::cerr << "Reported Result is : " << q << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an vnl_Vector " << std::endl;
}
}
}
/* Create a Rigid 3D transform with a rotation given by a Matrix */
{
TransformType::Pointer rotation = TransformType::New();
TransformType::VnlQuaternionType qrotation;
// 15 degrees in radians
const double angle = 15.0 * atan( 1.0f ) / 45.0;
const double sinth2 = sin( angle / 2.0 );
const double costh2 = cos( angle / 2.0 );
const double sinth = sin( angle );
const double costh = cos( angle );
// around the positive Z axis
qrotation[0] = 0.0;
qrotation[1] = 0.0;
qrotation[2] = sinth2;
qrotation[3] = costh2;
rotation->SetRotation( qrotation );
TransformType::OffsetType ioffset;
ioffset.Fill( 0.0f );
rotation->SetOffset( ioffset );
std::cout << "rotation: " << rotation;
// Verify the Offset content
TransformType::OffsetType offset = rotation->GetOffset();
std::cout << "pure Rotation test: " << std::endl;
std::cout << "Offset = " << offset << std::endl;
for(unsigned int i=0; i<N; i++)
{
if( fabs( offset[i]- ioffset[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Get Offset differs from SetOffset value " << std::endl;
return EXIT_FAILURE;
}
// VNL uses transposed matrices.
vnl_matrix_fixed<double,3,3> mrotation = qrotation.rotation_matrix();
// Verify the Matrix content
TransformType::MatrixType matrix = rotation->GetRotationMatrix();
std::cout << "Rotation matrix: " << std::endl;
std::cout << matrix << std::endl;
for(unsigned int i=0; i<N; i++)
{
for(unsigned int j=0; j<N; j++)
{
if( fabs( matrix[i][j]- mrotation[j][i] ) > epsilon )
{
Ok = false;
break;
}
}
}
if( !Ok )
{
std::cerr << "Get Rotation Matrix differs " << std::endl;
std::cerr << "from SetRotationMatrix value " << std::endl;
return EXIT_FAILURE;
}
{
// Rotate an itk::Point
TransformType::InputPointType::ValueType pInit[3] = {10,10,10};
TransformType::InputPointType p = pInit;
TransformType::InputPointType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputPointType r;
r = rotation->TransformPoint( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i]- r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error rotating point : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::Point " << std::endl;
}
}
{
// Rotate an itk::Vector
TransformType::InputVectorType::ValueType pInit[3] = {10,10,10};
TransformType::InputVectorType p = pInit;
TransformType::InputPointType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputVectorType r;
r = rotation->TransformVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error rotating vector : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok rotating an itk::Vector " << std::endl;
}
}
{
// Rotate an itk::CovariantVector
TransformType::InputCovariantVectorType::ValueType pInit[3] = {10,10,10};
TransformType::InputCovariantVectorType p = pInit;
TransformType::OutputCovariantVectorType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputCovariantVectorType r;
r = rotation->TransformCovariantVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error Rotating covariant vector: " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an itk::CovariantVector " << std::endl;
}
}
{
// Translate a vnl_vector
TransformType::InputVnlVectorType p;
p[0] = 11;
p[1] = 7;
p[2] = 15;
TransformType::OutputVnlVectorType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
q[2] = p[2];
TransformType::OutputVnlVectorType r;
r = rotation->TransformVector( p );
for(unsigned int i=0; i<N; i++)
{
if( fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating vnl_vector : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << "Ok translating an vnl_Vector " << std::endl;
}
}
}
{
// Test the Jacobian
std::cout << "Testing GetJacobian()" << std::endl;
TransformType::Pointer quaternionRigid = TransformType::New();
TransformType::ParametersType parameters( quaternionRigid->GetNumberOfParameters() );
parameters.Fill( 0.0 );
double angle = 0.62 / 180.0 * vnl_math::pi;
parameters[0] = 2.0 * sin( 0.5 * angle );
parameters[1] = 5.0 * sin( 0.5 * angle );
parameters[2] = -4.0 * sin( 0.5 * angle );
parameters[3] = cos( 0.5 * angle );
parameters[4] = 6.0;
parameters[5] = 8.0;
parameters[6] = 10.0;
quaternionRigid->SetParameters( parameters );
TransformType::InputPointType pInit;
pInit[0] = 1.0;
pInit[1] = 1.5;
pInit[2] = 2.6;
TransformType::JacobianType jacobian;
jacobian = quaternionRigid->GetJacobian( pInit );
std::cout << jacobian << std::endl;
TransformType::JacobianType approxJacobian = jacobian;
for( unsigned int k = 0; k < quaternionRigid->GetNumberOfParameters(); k++ )
{
const double delta = 0.001;
TransformType::ParametersType plusParameters;
TransformType::ParametersType minusParameters;
plusParameters = parameters;
minusParameters = parameters;
plusParameters[k] += delta;
minusParameters[k] -= delta;
TransformType::OutputPointType plusPoint;
TransformType::OutputPointType minusPoint;
quaternionRigid->SetParameters( plusParameters );
plusPoint = quaternionRigid->TransformPoint( pInit );
quaternionRigid->SetParameters( minusParameters );
minusPoint = quaternionRigid->TransformPoint( pInit );
for( unsigned int j = 0; j < 3; j++ )
{
double approxDerivative = ( plusPoint[j] - minusPoint[j] ) / ( 2.0 * delta );
double computedDerivative = jacobian[j][k];
approxJacobian[j][k] = approxDerivative;
if ( vnl_math_abs( approxDerivative - computedDerivative ) > 1e-5 )
{
std::cerr << "Error computing Jacobian [" << j << "][" << k << "]" << std::endl;
std::cerr << "Result should be: " << approxDerivative << std::endl;
std::cerr << "Reported result is: " << computedDerivative << std::endl;
std::cerr << " [ FAILED ] " << std::endl;
return EXIT_FAILURE;
} // if
} // for j
} // for k
std::cout << approxJacobian << std::endl;
std::cout << " [ PASSED ] " << std::endl;
// Testing inverse transform
std::cout << "Testing BackTransform()" << std::endl;
TransformType::OutputPointType pOut;
quaternionRigid->SetParameters( parameters );
pOut = quaternionRigid->BackTransform( quaternionRigid->TransformPoint( pInit ) );
// pOut should equate pInit
for( unsigned int j = 0; j < 3; j++ )
{
if ( vnl_math_abs( pOut[j] - pInit[j] ) > 1e-5 )
{
std::cerr << "Error computing back transform" << std::endl;
std::cerr << "Result should be: " << pInit << std::endl;
std::cerr << "Reported result is: " << pOut << std::endl;
std::cerr << " [ FAILED ] " << std::endl;
return EXIT_FAILURE;
}
}
std::cout << " [ PASSED ] " << std::endl;
}
return EXIT_SUCCESS;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -