📄 dlamch.c
字号:
#include "f2c.h"
#include "netlib.h"
#include <stdio.h>
static void dlamc1_(integer *beta, integer *t, logical *rnd, logical *ieee1);
static void dlamc2_(integer *beta, integer *t, logical *rnd, doublereal *eps,
integer *emin, doublereal *rmin, integer *emax, doublereal *rmax);
static doublereal dlamc3_(doublereal *a, doublereal *b);
static void dlamc4_(integer *emin, doublereal *start, integer *base);
static void dlamc5_(integer *beta, integer *p, integer *emin, logical *ieee, integer *emax, doublereal *rmax);
static doublereal dlamc33_(doublereal *a, doublereal *b);
doublereal dlamch_(const char *cmach)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMCH determines double precision machine parameters.
Arguments
=========
CMACH (input) CHARACTER*1
Specifies the value to be returned by DLAMCH:
= 'E' or 'e', DLAMCH := eps
= 'S' or 's , DLAMCH := sfmin
= 'B' or 'b', DLAMCH := base
= 'P' or 'p', DLAMCH := eps*base
= 'N' or 'n', DLAMCH := t
= 'R' or 'r', DLAMCH := rnd
= 'M' or 'm', DLAMCH := emin
= 'U' or 'u', DLAMCH := rmin
= 'L' or 'l', DLAMCH := emax
= 'O' or 'o', DLAMCH := rmax
where
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base**(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base**emax)*(1-eps)
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer i__1;
/* Local variables */
static doublereal base;
static integer beta;
static doublereal emin, prec, emax;
static integer imin, imax;
static logical lrnd;
static doublereal rmin, rmax, t, rmach;
static doublereal small, sfmin;
static integer it;
static doublereal rnd, eps;
if (first) {
first = FALSE_;
dlamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
base = (doublereal) beta;
t = (doublereal) it;
if (lrnd) {
rnd = 1.;
i__1 = 1 - it;
eps = pow_di(&base, &i__1) / 2;
} else {
rnd = 0.;
i__1 = 1 - it;
eps = pow_di(&base, &i__1);
}
prec = eps * base;
emin = (doublereal) imin;
emax = (doublereal) imax;
sfmin = rmin;
small = 1. / rmax;
if (small >= sfmin) {
/* Use SMALL plus a bit, to avoid the possibility of rounding
causing overflow when computing 1/sfmin.
*/
sfmin = small * (eps + 1.);
}
}
if (lsame_(cmach, "E")) {
rmach = eps;
} else if (lsame_(cmach, "S")) {
rmach = sfmin;
} else if (lsame_(cmach, "B")) {
rmach = base;
} else if (lsame_(cmach, "P")) {
rmach = prec;
} else if (lsame_(cmach, "N")) {
rmach = t;
} else if (lsame_(cmach, "R")) {
rmach = rnd;
} else if (lsame_(cmach, "M")) {
rmach = emin;
} else if (lsame_(cmach, "U")) {
rmach = rmin;
} else if (lsame_(cmach, "L")) {
rmach = emax;
} else if (lsame_(cmach, "O")) {
rmach = rmax;
}
return rmach;
} /* dlamch_ */
/* Subroutine */ void dlamc1_(integer *beta, integer *t, logical *rnd, logical *ieee1)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC1 determines the machine parameters given by BETA, T, RND, and
IEEE1.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
IEEE1 (output) LOGICAL
Specifies whether rounding appears to be done in the IEEE
'round to nearest' style.
Further Details
===============
The routine is based on the routine ENVRON by Malcolm and
incorporates suggestions by Gentleman and Marovich. See
Malcolm M. A. (1972) Algorithms to reveal properties of
floating-point arithmetic. Comms. of the ACM, 15, 949-951.
Gentleman W. M. and Marovich S. B. (1974) More on algorithms
that reveal properties of floating point arithmetic units.
Comms. of the ACM, 17, 276-277.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
doublereal d__1, d__2;
/* Local variables */
static logical lrnd;
static doublereal a, b, c, f;
static integer lbeta;
static doublereal savec;
static logical lieee1;
static doublereal t1, t2;
static integer lt;
static doublereal one = 1., qtr;
if (first) {
first = FALSE_;
/* LBETA, LIEEE1, LT and LRND are the local values of BETA,
IEEE1, T and RND.
Throughout this routine we use the function DLAMC3 to ensure
that relevant values are stored and not held in registers, or
are not affected by optimizers.
Compute a = 2.0**m with the smallest positive integer m such
that
fl( a + 1.0 ) = a.
*/
a = c = one;
while (c == one) {
a *= 2;
c = dlamc3_(&a, &one);
c = dlamc33_(&c, &a);
}
/* Now compute b = 2.0**m with the smallest positive integer m
such that
fl( a + b ) .gt. a.
*/
b = one;
do {
b *= 2;
c = dlamc3_(&a, &b);
} while (c == a);
/* Now compute the base. a and c are neighbouring floating point
numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
their difference is beta. Adding 0.25 to c is to ensure that it
is truncated to beta and not ( beta - 1 ).
*/
qtr = one / 4;
savec = c;
c = dlamc33_(&c, &a);
lbeta = (integer) (c + qtr);
/* Now determine whether rounding or chopping occurs, by adding a
bit less than beta/2 and a bit more than beta/2 to a.
*/
b = (doublereal) lbeta;
d__1 = b / 2;
d__2 = -b / 100;
f = dlamc3_(&d__1, &d__2);
c = dlamc3_(&f, &a);
if (c == a) {
lrnd = TRUE_;
} else {
lrnd = FALSE_;
}
d__1 = b / 2;
d__2 = b / 100;
f = dlamc3_(&d__1, &d__2);
c = dlamc3_(&f, &a);
if (lrnd && c == a) {
lrnd = FALSE_;
}
/* Try and decide whether rounding is done in the IEEE 'round to
nearest' style. B/2 is half a unit in the last place of the two
numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
zero, and SAVEC is odd. Thus adding B/2 to A should not change
A, but adding B/2 to SAVEC should change SAVEC.
*/
d__1 = b / 2;
t1 = dlamc3_(&d__1, &a);
d__1 = b / 2;
t2 = dlamc3_(&d__1, &savec);
lieee1 = t1 == a && t2 > savec && lrnd;
/* Now find the mantissa, t. It should be the integer part of
log to the base beta of a, however it is safer to determine t
by powering. So we find t as the smallest positive integer for
which
fl( beta**t + 1.0 ) = 1.0.
*/
lt = 0;
a = c = one;
while (c == one) {
++lt;
a *= lbeta;
c = dlamc3_(&a, &one);
c = dlamc33_(&c, &a);
}
}
*beta = lbeta;
*t = lt;
*rnd = lrnd;
*ieee1 = lieee1;
} /* dlamc1_ */
/* Subroutine */ void dlamc2_(integer *beta, integer *t, logical *rnd,
doublereal *eps, integer *emin, doublereal *rmin,
integer *emax, doublereal *rmax)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAMC2 determines the machine parameters specified in its argument
list.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
EPS (output) DOUBLE PRECISION
The smallest positive number such that
fl( 1.0 - EPS ) .LT. 1.0,
where fl denotes the computed value.
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow occurs.
RMIN (output) DOUBLE PRECISION
The smallest normalized number for the machine, given by
BASE**( EMIN - 1 ), where BASE is the floating point value
of BETA.
EMAX (output) INTEGER
The maximum exponent before overflow occurs.
RMAX (output) DOUBLE PRECISION
The largest positive number for the machine, given by
BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
value of BETA.
Further Details
===============
The computation of EPS is based on a routine PARANOIA by
W. Kahan of the University of California at Berkeley.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
static logical iwarn = FALSE_;
/* System generated locals */
integer i__1;
doublereal d__1, d__2;
/* Local variables */
static logical ieee;
static doublereal half = 0.5;
static logical lrnd;
static doublereal leps, zero = 0., a, b, c;
static integer i, lbeta;
static doublereal rbase;
static integer lemin, lemax, gnmin;
static doublereal small;
static integer gpmin;
static doublereal third, lrmin, lrmax, sixth;
static logical lieee1;
static integer lt, ngnmin, ngpmin;
static doublereal one = 1.;
if (first) {
first = FALSE_;
/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of
BETA, T, RND, EPS, EMIN and RMIN.
Throughout this routine we use the function DLAMC3 to ensure
that relevant values are stored and not held in registers, or
are not affected by optimizers.
DLAMC1 returns the parameters LBETA, LT, LRND and LIEEE1.
*/
dlamc1_(&lbeta, <, &lrnd, &lieee1);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -