⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dgeqrf.c

📁 InsightToolkit-1.4.0(有大量的优化算法程序)
💻 C
字号:
#include "f2c.h"
#include "netlib.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;

/* Subroutine */ void dgeqrf_(m, n, a, lda, tau, work, lwork, info)
integer *m, *n;
doublereal *a;
integer *lda;
doublereal *tau, *work;
integer *lwork, *info;
{
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;

    /* Local variables */
    static integer i, k, nbmin, iinfo;
    static integer ib, nb;
    static integer nx;
    static integer ldwork, lwkopt;
    static logical lquery;
    static integer iws;

/*  -- LAPACK routine (version 3.0) --                                    */
/*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,        */
/*     Courant Institute, Argonne National Lab, and Rice University       */
/*     June 30, 1999                                                      */
/*                                                                        */
/*  Purpose                                                               */
/*  =======                                                               */
/*                                                                        */
/*  DGEQRF computes a QR factorization of a real M-by-N matrix A:         */
/*  A = Q * R.                                                            */
/*                                                                        */
/*  Arguments                                                             */
/*  =========                                                             */
/*                                                                        */
/*  M       (input) INTEGER                                               */
/*          The number of rows of the matrix A.  M >= 0.                  */
/*                                                                        */
/*  N       (input) INTEGER                                               */
/*          The number of columns of the matrix A.  N >= 0.               */
/*                                                                        */
/*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)      */
/*          On entry, the M-by-N matrix A.                                */
/*          On exit, the elements on and above the diagonal of the array  */
/*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is    */
/*          upper triangular if m >= n); the elements below the diagonal, */
/*          with the array TAU, represent the orthogonal matrix Q as a    */
/*          product of min(m,n) elementary reflectors (see Further        */
/*          Details).                                                     */
/*                                                                        */
/*  LDA     (input) INTEGER                                               */
/*          The leading dimension of the array A.  LDA >= max(1,M).       */
/*                                                                        */
/*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))         */
/*          The scalar factors of the elementary reflectors (see Further  */
/*          Details).                                                     */
/*                                                                        */
/*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)  */
/*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.      */
/*                                                                        */
/*  LWORK   (input) INTEGER                                               */
/*          The dimension of the array WORK.  LWORK >= max(1,N).          */
/*          For optimum performance LWORK >= N*NB, where NB is            */
/*          the optimal blocksize.                                        */
/*                                                                        */
/*          If LWORK = -1, then a workspace query is assumed; the routine */
/*          only calculates the optimal size of the WORK array, returns   */
/*          this value as the first entry of the WORK array, and no error */
/*          message related to LWORK is issued by XERBLA.                 */
/*                                                                        */
/*  INFO    (output) INTEGER                                              */
/*          = 0:  successful exit                                         */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value    */
/*                                                                        */
/*  Further Details                                                       */
/*  ===============                                                       */
/*                                                                        */
/*  The matrix Q is represented as a product of elementary reflectors     */
/*                                                                        */
/*     Q = H(1) H(2) . . . H(k), where k = min(m,n).                      */
/*                                                                        */
/*  Each H(i) has the form                                                */
/*                                                                        */
/*     H(i) = I - tau * v * v'                                            */
/*                                                                        */
/*  where tau is a real scalar, and v is a real vector with               */
/*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),  */
/*  and tau in TAU(i).                                                    */
/*                                                                        */
/*  ===================================================================== */

    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --tau;
    --work;

/*     Test the input arguments */

    *info = 0;
    nb = ilaenv_(&c__1, "DGEQRF", " ", m, n, &c_n1, &c_n1);
    lwkopt = *n * nb;
    work[1] = (doublereal) lwkopt;
    lquery = *lwork == -1;
    if (*m < 0) {
        *info = -1;
    } else if (*n < 0) {
        *info = -2;
    } else if (*lda < max(1,*m)) {
        *info = -4;
    } else if (*lwork < max(1,*n) && ! lquery) {
        *info = -7;
    }
    if (*info != 0) {
        i__1 = -(*info);
        xerbla_("DGEQRF", &i__1);
        return;
    } else if (lquery) {
        return;
    }

/*     Quick return if possible */

    k = min(*m,*n);
    if (k == 0) {
        work[1] = 1.;
        return;
    }

    nbmin = 2;
    nx = 0;
    iws = *n;
    if (nb > 1 && nb < k) {

/*        Determine when to cross over from blocked to unblocked code. */

        nx = ilaenv_(&c__3, "DGEQRF", " ", m, n, &c_n1, &c_n1);
        nx = max(0,nx);
        if (nx < k) {

/*           Determine if workspace is large enough for blocked code. */

            ldwork = *n;
            iws = ldwork * nb;
            if (*lwork < iws) {

/*              Not enough workspace to use optimal NB:  reduce NB and */
/*              determine the minimum value of NB. */

                nb = *lwork / ldwork;
                nbmin = ilaenv_(&c__2, "DGEQRF", " ", m, n, &c_n1, &c_n1);
                nbmin = max(2,nbmin);
            }
        }
    }

    if (nb >= nbmin && nb < k && nx < k) {

/*        Use blocked code initially */

        i__1 = k - nx;
        i__2 = nb;
        for (i = 1; i__2 < 0 ? i >= i__1 : i <= i__1; i += i__2) {
            ib = min(k - i + 1,nb);

/*           Compute the QR factorization of the current block */
/*           A(i:m,i:i+ib-1) */

            i__3 = *m - i + 1;
            dgeqr2_(&i__3, &ib, &a[i + i * a_dim1], lda, &tau[i], &work[1], &iinfo);
            if (i + ib <= *n) {

/*              Form the triangular factor of the block reflector */
/*              H = H(i) H(i+1) . . . H(i+ib-1) */

                i__3 = *m - i + 1;
                dlarft_("Forward", "Columnwise", &i__3, &ib, &a[i + i * a_dim1], lda, &tau[i], &work[1], &ldwork);

/*              Apply H' to A(i:m,i+ib:n) from the left */

                i__3 = *m - i + 1;
                i__4 = *n - i - ib + 1;
                dlarfb_("Left", "Transpose", "Forward", "Columnwise", &i__3, &i__4,
                        &ib, &a[i + i * a_dim1], lda, &work[1], &ldwork,
                        &a[i + (i + ib) * a_dim1], lda, &work[ib + 1], &ldwork);
            }
        }
    } else {
        i = 1;
    }

/*     Use unblocked code to factor the last or only block. */

    if (i <= k) {
        i__2 = *m - i + 1;
        i__1 = *n - i + 1;
        dgeqr2_(&i__2, &i__1, &a[i + i * a_dim1], lda, &tau[i], &work[1], &iinfo);
    }

    work[1] = (doublereal) iws;

} /* dgeqrf_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -