⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dtrmm.c

📁 InsightToolkit-1.4.0(有大量的优化算法程序)
💻 C
字号:
#include "f2c.h"
#include "netlib.h"

/* Subroutine */ void dtrmm_(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
const char *side, *uplo, *transa, *diag;
const integer *m, *n;
doublereal *alpha, *a;
const integer *lda;
doublereal *b;
const integer *ldb;
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;

    /* Local variables */
    static integer info;
    static doublereal temp;
    static integer i, j, k;
    static logical lside;
    static integer nrowa;
    static logical upper;
    static logical nounit;

/*  Purpose */
/*  ======= */

/*  DTRMM  performs one of the matrix-matrix operations */

/*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ), */

/*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or */
/*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */

/*     op( A ) = A   or   op( A ) = A'. */

/*  Parameters */
/*  ========== */

/*  SIDE   - CHARACTER*1. */
/*           On entry,  SIDE specifies whether  op( A ) multiplies B from */
/*           the left or right as follows: */

/*              SIDE = 'L' or 'l'   B := alpha*op( A )*B. */

/*              SIDE = 'R' or 'r'   B := alpha*B*op( A ). */

/*           Unchanged on exit. */

/*  UPLO   - CHARACTER*1. */
/*           On entry, UPLO specifies whether the matrix A is an upper or */
/*           lower triangular matrix as follows: */

/*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */

/*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */

/*           Unchanged on exit. */

/*  TRANSA - CHARACTER*1. */
/*           On entry, TRANSA specifies the form of op( A ) to be used in */
/*           the matrix multiplication as follows: */

/*              TRANSA = 'N' or 'n'   op( A ) = A. */

/*              TRANSA = 'T' or 't'   op( A ) = A'. */

/*              TRANSA = 'C' or 'c'   op( A ) = A'. */

/*           Unchanged on exit. */

/*  DIAG   - CHARACTER*1. */
/*           On entry, DIAG specifies whether or not A is unit triangular */
/*           as follows: */

/*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */

/*              DIAG = 'N' or 'n'   A is not assumed to be unit */
/*                                  triangular. */

/*           Unchanged on exit. */

/*  M      - INTEGER. */
/*           On entry, M specifies the number of rows of B. M must be at */
/*           least zero. */
/*           Unchanged on exit. */

/*  N      - INTEGER. */
/*           On entry, N specifies the number of columns of B.  N must be */
/*           at least zero. */
/*           Unchanged on exit. */

/*  ALPHA  - DOUBLE PRECISION. */
/*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
/*           zero then  A is not referenced and  B need not be set before */
/*           entry. */
/*           Unchanged on exit. */

/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
/*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. */
/*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k */
/*           upper triangular part of the array  A must contain the upper */
/*           triangular matrix  and the strictly lower triangular part of */
/*           A is not referenced. */
/*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k */
/*           lower triangular part of the array  A must contain the lower */
/*           triangular matrix  and the strictly upper triangular part of */
/*           A is not referenced. */
/*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of */
/*           A  are not referenced either,  but are assumed to be  unity. */
/*           Unchanged on exit. */

/*  LDA    - INTEGER. */
/*           On entry, LDA specifies the first dimension of A as declared */
/*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
/*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' */
/*           then LDA must be at least max( 1, n ). */
/*           Unchanged on exit. */

/*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
/*           Before entry,  the leading  m by n part of the array  B must */
/*           contain the matrix  B,  and  on exit  is overwritten  by the */
/*           transformed matrix. */

/*  LDB    - INTEGER. */
/*           On entry, LDB specifies the first dimension of B as declared */
/*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
/*           max( 1, m ). */
/*           Unchanged on exit. */


/*  Level 3 Blas routine. */

/*  -- Written on 8-February-1989. */
/*     Jack Dongarra, Argonne National Laboratory. */
/*     Iain Duff, AERE Harwell. */
/*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/*     Sven Hammarling, Numerical Algorithms Group Ltd. */


    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

/*     Test the input parameters. */

    lside = lsame_(side, "L");
    if (lside) {
        nrowa = *m;
    } else {
        nrowa = *n;
    }
    nounit = lsame_(diag, "N");
    upper = lsame_(uplo, "U");

    info = 0;
    if (! lside && ! lsame_(side, "R")) {
        info = 1;
    } else if (! upper && ! lsame_(uplo, "L")) {
        info = 2;
    } else if (! lsame_(transa, "N") && ! lsame_(transa, "T") && ! lsame_(transa, "C")) {
        info = 3;
    } else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {
        info = 4;
    } else if (*m < 0) {
        info = 5;
    } else if (*n < 0) {
        info = 6;
    } else if (*lda < max(1,nrowa)) {
        info = 9;
    } else if (*ldb < max(1,*m)) {
        info = 11;
    }
    if (info != 0) {
        xerbla_("DTRMM ", &info);
        return;
    }

/*     Quick return if possible. */

    if (*n == 0) {
        return;
    }

/*     And when  alpha.eq.zero. */

    if (*alpha == 0.) {
        i__1 = *n;
        for (j = 1; j <= i__1; ++j) {
            i__2 = *m;
            for (i = 1; i <= i__2; ++i) {
                b[i + j * b_dim1] = 0.;
            }
        }
        return;
    }

/*     Start the operations. */

    if (lside) {
        if (lsame_(transa, "N")) {

/*           Form  B := alpha*A*B. */

            if (upper) {
                i__1 = *n;
                for (j = 1; j <= i__1; ++j) {
                    i__2 = *m;
                    for (k = 1; k <= i__2; ++k) {
                        if (b[k + j * b_dim1] != 0.) {
                            temp = *alpha * b[k + j * b_dim1];
                            i__3 = k - 1;
                            for (i = 1; i <= i__3; ++i) {
                                b[i + j * b_dim1] += temp * a[i + k * a_dim1];
                            }
                            if (nounit) {
                                temp *= a[k + k * a_dim1];
                            }
                            b[k + j * b_dim1] = temp;
                        }
                    }
                }
            } else {
                i__1 = *n;
                for (j = 1; j <= i__1; ++j) {
                    for (k = *m; k >= 1; --k) {
                        if (b[k + j * b_dim1] != 0.) {
                            temp = *alpha * b[k + j * b_dim1];
                            b[k + j * b_dim1] = temp;
                            if (nounit) {
                                b[k + j * b_dim1] *= a[k + k * a_dim1];
                            }
                            i__2 = *m;
                            for (i = k + 1; i <= i__2; ++i) {
                                b[i + j * b_dim1] += temp * a[i + k * a_dim1];
                            }
                        }
                    }
                }
            }
        } else {

/*           Form  B := alpha*A'*B. */

            if (upper) {
                i__1 = *n;
                for (j = 1; j <= i__1; ++j) {
                    for (i = *m; i >= 1; --i) {
                        temp = b[i + j * b_dim1];
                        if (nounit) {
                            temp *= a[i + i * a_dim1];
                        }
                        i__2 = i - 1;
                        for (k = 1; k <= i__2; ++k) {
                            temp += a[k + i * a_dim1] * b[k + j * b_dim1];
                        }
                        b[i + j * b_dim1] = *alpha * temp;
                    }
                }
            } else {
                i__1 = *n;
                for (j = 1; j <= i__1; ++j) {
                    i__2 = *m;
                    for (i = 1; i <= i__2; ++i) {
                        temp = b[i + j * b_dim1];
                        if (nounit) {
                            temp *= a[i + i * a_dim1];
                        }
                        i__3 = *m;
                        for (k = i + 1; k <= i__3; ++k) {
                            temp += a[k + i * a_dim1] * b[k + j * b_dim1];
                        }
                        b[i + j * b_dim1] = *alpha * temp;
                    }
                }
            }
        }
    } else {
        if (lsame_(transa, "N")) {

/*           Form  B := alpha*B*A. */

            if (upper) {
                for (j = *n; j >= 1; --j) {
                    temp = *alpha;
                    if (nounit) {
                        temp *= a[j + j * a_dim1];
                    }
                    i__1 = *m;
                    for (i = 1; i <= i__1; ++i) {
                        b[i + j * b_dim1] *= temp;
                    }
                    i__1 = j - 1;
                    for (k = 1; k <= i__1; ++k) {
                        if (a[k + j * a_dim1] != 0.) {
                            temp = *alpha * a[k + j * a_dim1];
                            i__2 = *m;
                            for (i = 1; i <= i__2; ++i) {
                                b[i + j * b_dim1] += temp * b[i + k * b_dim1];
                            }
                        }
                    }
                }
            } else {
                i__1 = *n;
                for (j = 1; j <= i__1; ++j) {
                    temp = *alpha;
                    if (nounit) {
                        temp *= a[j + j * a_dim1];
                    }
                    i__2 = *m;
                    for (i = 1; i <= i__2; ++i) {
                        b[i + j * b_dim1] *= temp;
                    }
                    i__2 = *n;
                    for (k = j + 1; k <= i__2; ++k) {
                        if (a[k + j * a_dim1] != 0.) {
                            temp = *alpha * a[k + j * a_dim1];
                            i__3 = *m;
                            for (i = 1; i <= i__3; ++i) {
                                b[i + j * b_dim1] += temp * b[i + k * b_dim1];
                            }
                        }
                    }
                }
            }
        } else {

/*           Form  B := alpha*B*A'. */

            if (upper) {
                i__1 = *n;
                for (k = 1; k <= i__1; ++k) {
                    i__2 = k - 1;
                    for (j = 1; j <= i__2; ++j) {
                        if (a[j + k * a_dim1] != 0.) {
                            temp = *alpha * a[j + k * a_dim1];
                            i__3 = *m;
                            for (i = 1; i <= i__3; ++i) {
                                b[i + j * b_dim1] += temp * b[i + k * b_dim1];
                            }
                        }
                    }
                    temp = *alpha;
                    if (nounit) {
                        temp *= a[k + k * a_dim1];
                    }
                    if (temp != 1.) {
                        i__2 = *m;
                        for (i = 1; i <= i__2; ++i) {
                            b[i + k * b_dim1] *= temp;
                        }
                    }
                }
            } else {
                for (k = *n; k >= 1; --k) {
                    i__1 = *n;
                    for (j = k + 1; j <= i__1; ++j) {
                        if (a[j + k * a_dim1] != 0.) {
                            temp = *alpha * a[j + k * a_dim1];
                            i__2 = *m;
                            for (i = 1; i <= i__2; ++i) {
                                b[i + j * b_dim1] += temp * b[i + k * b_dim1];
                            }
                        }
                    }
                    temp = *alpha;
                    if (nounit) {
                        temp *= a[k + k * a_dim1];
                    }
                    if (temp != 1.) {
                        i__1 = *m;
                        for (i = 1; i <= i__1; ++i) {
                            b[i + k * b_dim1] *= temp;
                        }
                    }
                }
            }
        }
    }
} /* dtrmm_ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -