📄 slamch.c
字号:
#include "f2c.h"
#include "netlib.h"
#include <stdio.h>
static void slamc1_(integer *beta, integer *t, logical *rnd, logical *ieee1);
static void slamc2_(integer *beta, integer *t, logical *rnd, real *eps,
integer *emin, real *rmin, integer *emax, real *rmax);
static real slamc3_(real *a, real *b);
static void slamc4_(integer *emin, real *start, integer *base);
static void slamc5_(integer *beta, integer *p, integer *emin, logical *ieee, integer *emax, real *rmax);
real slamch_(const char *cmach)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
SLAMCH determines single precision machine parameters.
Arguments
=========
CMACH (input) CHARACTER*1
Specifies the value to be returned by SLAMCH:
= 'E' or 'e', SLAMCH := eps
= 'S' or 's , SLAMCH := sfmin
= 'B' or 'b', SLAMCH := base
= 'P' or 'p', SLAMCH := eps*base
= 'N' or 'n', SLAMCH := t
= 'R' or 'r', SLAMCH := rnd
= 'M' or 'm', SLAMCH := emin
= 'U' or 'u', SLAMCH := rmin
= 'L' or 'l', SLAMCH := emax
= 'O' or 'o', SLAMCH := rmax
where
eps = relative machine precision
sfmin = safe minimum, such that 1/sfmin does not overflow
base = base of the machine
prec = eps*base
t = number of (base) digits in the mantissa
rnd = 1.0 when rounding occurs in addition, 0.0 otherwise
emin = minimum exponent before (gradual) underflow
rmin = underflow threshold - base**(emin-1)
emax = largest exponent before overflow
rmax = overflow threshold - (base**emax)*(1-eps)
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
integer i__1;
/* Local variables */
static real base;
static integer beta;
static real emin, prec, emax;
static integer imin, imax;
static logical lrnd;
static real rmin, rmax, t, rmach;
static real small, sfmin;
static integer it;
static real rnd, eps;
if (first) {
first = FALSE_;
slamc2_(&beta, &it, &lrnd, &eps, &imin, &rmin, &imax, &rmax);
base = (real) beta;
t = (real) it;
if (lrnd) {
rnd = 1.f;
i__1 = 1 - it;
eps = pow_ri(&base, &i__1) / 2;
} else {
rnd = 0.f;
i__1 = 1 - it;
eps = pow_ri(&base, &i__1);
}
prec = eps * base;
emin = (real) imin;
emax = (real) imax;
sfmin = rmin;
small = 1.f / rmax;
if (small >= sfmin) {
/* Use SMALL plus a bit, to avoid the possibility of rounding
causing overflow when computing 1/sfmin.
*/
sfmin = small * (eps + 1.f);
}
}
if (lsame_(cmach, "E")) {
rmach = eps;
} else if (lsame_(cmach, "S")) {
rmach = sfmin;
} else if (lsame_(cmach, "B")) {
rmach = base;
} else if (lsame_(cmach, "P")) {
rmach = prec;
} else if (lsame_(cmach, "N")) {
rmach = t;
} else if (lsame_(cmach, "R")) {
rmach = rnd;
} else if (lsame_(cmach, "M")) {
rmach = emin;
} else if (lsame_(cmach, "U")) {
rmach = rmin;
} else if (lsame_(cmach, "L")) {
rmach = emax;
} else if (lsame_(cmach, "O")) {
rmach = rmax;
}
return rmach;
} /* slamch_ */
/* Subroutine */ void slamc1_(integer *beta, integer *t, logical *rnd, logical *ieee1)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
SLAMC1 determines the machine parameters given by BETA, T, RND, and
IEEE1.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
IEEE1 (output) LOGICAL
Specifies whether rounding appears to be done in the IEEE
'round to nearest' style.
Further Details
===============
The routine is based on the routine ENVRON by Malcolm and
incorporates suggestions by Gentleman and Marovich. See
Malcolm M. A. (1972) Algorithms to reveal properties of
floating-point arithmetic. Comms. of the ACM, 15, 949-951.
Gentleman W. M. and Marovich S. B. (1974) More on algorithms
that reveal properties of floating point arithmetic units.
Comms. of the ACM, 17, 276-277.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
/* System generated locals */
real r__1, r__2;
/* Local variables */
static logical lrnd;
static real a, b, c, f;
static integer lbeta;
static real savec;
static logical lieee1;
static real t1, t2;
static integer lt;
static real one = 1.f;
if (first) {
first = FALSE_;
/* LBETA, LIEEE1, LT and LRND are the local values of BETA,
IEEE1, T and RND.
Throughout this routine we use the function SLAMC3 to ensure
that relevant values are stored and not held in registers, or
are not affected by optimizers.
Compute a = 2.0**m with the smallest positive integer m such
that
fl( a + 1.0 ) = a.
*/
a = c = one;
while (c == one) {
a *= 2;
c = slamc3_(&a, &one);
r__1 = -a;
c = slamc3_(&c, &r__1);
}
/* Now compute b = 2.0**m with the smallest positive integer m
such that
fl( a + b ) .gt. a.
*/
b = one;
c = slamc3_(&a, &b);
/* The next two lines of code were replaced by Ian Scott from the original line
> while (c==a) {
During a optimised build under MSVC, the compiler was using the value of
C still in a register in while loop test. This is an 80-bit value rather than
the 64 bit value it uses after saving and loading from memory.
So the 80 bit precision value was having 1 added, making it a different number
and so not executing the loop.
The call to slamc3_ in the loop condition forces the value to 64-bit precision
as during the previous calculation.
*/
r__1 = -a;
while (slamc3_(&c, &r__1) == 0.f) {
b *= 2;
c = slamc3_(&a, &b);
}
/* Now compute the base. a and c are neighbouring floating point
numbers in the interval ( beta**t, beta**( t + 1 ) ) and so
their difference is beta. Adding 0.25 to c is to ensure that it
is truncated to beta and not ( beta - 1 ).
*/
savec = c;
r__1 = -a;
c = slamc3_(&c, &r__1);
lbeta = (integer)(c + 0.25f);
/* Now determine whether rounding or chopping occurs, by adding a
bit less than beta/2 and a bit more than beta/2 to a.
*/
b = (real) lbeta;
r__1 = b / 2;
r__2 = -b / 100;
f = slamc3_(&r__1, &r__2);
c = slamc3_(&f, &a);
if (c == a) {
lrnd = TRUE_;
} else {
lrnd = FALSE_;
}
r__1 = b / 2;
r__2 = b / 100;
f = slamc3_(&r__1, &r__2);
c = slamc3_(&f, &a);
if (lrnd && c == a) {
lrnd = FALSE_;
}
/* Try and decide whether rounding is done in the IEEE 'round to
nearest' style. B/2 is half a unit in the last place of the two
numbers A and SAVEC. Furthermore, A is even, i.e. has last bit
zero, and SAVEC is odd. Thus adding B/2 to A should not change
A, but adding B/2 to SAVEC should change SAVEC.
*/
r__1 = b / 2;
t1 = slamc3_(&r__1, &a);
r__1 = b / 2;
t2 = slamc3_(&r__1, &savec);
lieee1 = t1 == a && t2 > savec && lrnd;
/* Now find the mantissa, t. It should be the integer part of
log to the base beta of a, however it is safer to determine t
by powering. So we find t as the smallest positive integer for
which
fl( beta**t + 1.0 ) = 1.0. */
lt = 0;
a = c = one;
while (c == one) {
++lt;
a *= lbeta;
c = slamc3_(&a, &one);
r__1 = -a;
c = slamc3_(&c, &r__1);
}
}
*beta = lbeta;
*t = lt;
*rnd = lrnd;
*ieee1 = lieee1;
} /* slamc1_ */
/* Subroutine */ void slamc2_(integer *beta, integer *t, logical *rnd,
real *eps, integer *emin, real *rmin,
integer *emax, real *rmax)
{
/* -- LAPACK auxiliary routine (version 2.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
SLAMC2 determines the machine parameters specified in its argument
list.
Arguments
=========
BETA (output) INTEGER
The base of the machine.
T (output) INTEGER
The number of ( BETA ) digits in the mantissa.
RND (output) LOGICAL
Specifies whether proper rounding ( RND = .TRUE. ) or
chopping ( RND = .FALSE. ) occurs in addition. This may not
be a reliable guide to the way in which the machine performs
its arithmetic.
EPS (output) REAL
The smallest positive number such that
fl( 1.0 - EPS ) .LT. 1.0,
where fl denotes the computed value.
EMIN (output) INTEGER
The minimum exponent before (gradual) underflow occurs.
RMIN (output) REAL
The smallest normalized number for the machine, given by
BASE**( EMIN - 1 ), where BASE is the floating point value
of BETA.
EMAX (output) INTEGER
The maximum exponent before overflow occurs.
RMAX (output) REAL
The largest positive number for the machine, given by
BASE**EMAX * ( 1 - EPS ), where BASE is the floating point
value of BETA.
Further Details
===============
The computation of EPS is based on a routine PARANOIA by
W. Kahan of the University of California at Berkeley.
=====================================================================
*/
/* Initialized data */
static logical first = TRUE_;
static logical iwarn = FALSE_;
/* System generated locals */
integer i__1;
real r__1, r__2;
/* Local variables */
static logical ieee;
static real half = 0.5f;
static logical lrnd;
static real leps, zero = 0.f, a, b, c;
static integer i, lbeta;
static real rbase;
static integer lemin, lemax, gnmin;
static real small;
static integer gpmin;
static real third, lrmin, lrmax, sixth;
static logical lieee1;
static integer lt, ngnmin, ngpmin;
static real one = 1.f;
if (first) {
first = FALSE_;
/* LBETA, LT, LRND, LEPS, LEMIN and LRMIN are the local values of
BETA, T, RND, EPS, EMIN and RMIN.
Throughout this routine we use the function SLAMC3 to ensure
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -