📄 dtgsy2.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Table of constant values */
static integer c__8 = 8;
static integer c__1 = 1;
static doublereal c_b27 = -1.;
static doublereal c_b42 = 1.;
static integer c__64 = 64;
static doublereal c_b54 = 0.;
static integer c__0 = 0;
/* Subroutine */ void dtgsy2_(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d,
ldd, e, lde, f, ldf, scale, rdsum, rdscal, iwork, pq, info)
char *trans;
integer *ijob, *m, *n;
doublereal *a;
integer *lda;
doublereal *b;
integer *ldb;
doublereal *c;
integer *ldc;
doublereal *d;
integer *ldd;
doublereal *e;
integer *lde;
doublereal *f;
integer *ldf;
doublereal *scale, *rdsum, *rdscal;
integer *iwork, *pq, *info;
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3;
/* Local variables */
static integer ierr, zdim, ipiv[8], jpiv[8], i, j, k, p, q;
static doublereal alpha;
static doublereal z[64] /* was [8][8] */;
static integer ie, je, mb, nb, ii, jj, is, js;
static doublereal scaloc;
static logical notran;
static doublereal rhs[8];
static integer isp1, jsp1;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* Purpose */
/* ======= */
/* DTGSY2 solves the generalized Sylvester equation: */
/* A * R - L * B = scale * C (1) */
/* D * R - L * E = scale * F, */
/* using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, */
/* (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, */
/* N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) */
/* must be in generalized Schur canonical form, i.e. A, B are upper */
/* quasi triangular and D, E are upper triangular. The solution (R, L) */
/* overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor */
/* chosen to avoid overflow. */
/* In matrix notation solving equation (1) corresponds to solve */
/* Z*x = scale*b, where Z is defined as */
/* Z = [ kron(In, A) -kron(B', Im) ] (2) */
/* [ kron(In, D) -kron(E', Im) ], */
/* Ik is the identity matrix of size k and X' is the transpose of X. */
/* kron(X, Y) is the Kronecker product between the matrices X and Y. */
/* In the process of solving (1), we solve a number of such systems */
/* where Dim(In), Dim(In) = 1 or 2. */
/* If TRANS = 'T', solve the transposed system Z'*y = scale*b for y, */
/* which is equivalent to solve for R and L in */
/* A' * R + D' * L = scale * C (3) */
/* R * B' + L * E' = scale * -F */
/* This case is used to compute an estimate of Dif[(A, D), (B, E)] = */
/* sigma_min(Z) using reverse communicaton with DLACON. */
/* DTGSY2 also (IJOB >= 1) contributes to the computation in STGSYL */
/* of an upper bound on the separation between to matrix pairs. Then */
/* the input (A, D), (B, E) are sub-pencils of the matrix pair in */
/* DTGSYL. See STGSYL for details. */
/* Arguments */
/* ========= */
/* TRANS (input) CHARACTER */
/* = 'N', solve the generalized Sylvester equation (1). */
/* = 'T': solve the 'transposed' system (3). */
/* IJOB (input) INTEGER */
/* Specifies what kind of functionality to be performed. */
/* = 0: solve (1) only. */
/* = 1: A contribution from this subsystem to a Frobenius */
/* norm-based estimate of the separation between two matrix */
/* pairs is computed. (look ahead strategy is used). */
/* = 2: A contribution from this subsystem to a Frobenius */
/* norm-based estimate of the separation between two matrix */
/* pairs is computed. (DGECON on sub-systems is used.) */
/* Not referenced if TRANS = 'T'. */
/* M (input) INTEGER */
/* On entry, M specifies the order of A and D, and the row */
/* dimension of C, F, R and L. */
/* N (input) INTEGER */
/* On entry, N specifies the order of B and E, and the column */
/* dimension of C, F, R and L. */
/* A (input) DOUBLE PRECISION array, dimension (LDA, M) */
/* On entry, A contains an upper quasi triangular matrix. */
/* LDA (input) INTEGER */
/* The leading dimension of the matrix A. LDA >= max(1, M). */
/* B (input) DOUBLE PRECISION array, dimension (LDB, N) */
/* On entry, B contains an upper quasi triangular matrix. */
/* LDB (input) INTEGER */
/* The leading dimension of the matrix B. LDB >= max(1, N). */
/* C (input/ output) DOUBLE PRECISION array, dimension (LDC, N) */
/* On entry, C contains the right-hand-side of the first matrix */
/* equation in (1). */
/* On exit, if IJOB = 0, C has been overwritten by the */
/* solution R. */
/* LDC (input) INTEGER */
/* The leading dimension of the matrix C. LDC >= max(1, M). */
/* D (input) DOUBLE PRECISION array, dimension (LDD, M) */
/* On entry, D contains an upper triangular matrix. */
/* LDD (input) INTEGER */
/* The leading dimension of the matrix D. LDD >= max(1, M). */
/* E (input) DOUBLE PRECISION array, dimension (LDE, N) */
/* On entry, E contains an upper triangular matrix. */
/* LDE (input) INTEGER */
/* The leading dimension of the matrix E. LDE >= max(1, N). */
/* F (input/ output) DOUBLE PRECISION array, dimension (LDF, N) */
/* On entry, F contains the right-hand-side of the second matrix */
/* equation in (1). */
/* On exit, if IJOB = 0, F has been overwritten by the */
/* solution L. */
/* LDF (input) INTEGER */
/* The leading dimension of the matrix F. LDF >= max(1, M). */
/* SCALE (output) DOUBLE PRECISION */
/* On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions */
/* R and L (C and F on entry) will hold the solutions to a */
/* slightly perturbed system but the input matrices A, B, D and */
/* E have not been changed. If SCALE = 0, R and L will hold the */
/* solutions to the homogeneous system with C = F = 0. Normally, */
/* SCALE = 1. */
/* RDSUM (input/output) DOUBLE PRECISION */
/* On entry, the sum of squares of computed contributions to */
/* the Dif-estimate under computation by DTGSYL, where the */
/* scaling factor RDSCAL (see below) has been factored out. */
/* On exit, the corresponding sum of squares updated with the */
/* contributions from the current sub-system. */
/* If TRANS = 'T' RDSUM is not touched. */
/* NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. */
/* RDSCAL (input/output) DOUBLE PRECISION */
/* On entry, scaling factor used to prevent overflow in RDSUM. */
/* On exit, RDSCAL is updated w.r.t. the current contributions */
/* in RDSUM. */
/* If TRANS = 'T', RDSCAL is not touched. */
/* NOTE: RDSCAL only makes sense when DTGSY2 is called by */
/* DTGSYL. */
/* IWORK (workspace) INTEGER array, dimension (M+N+2) */
/* PQ (output) INTEGER */
/* On exit, the number of subsystems (of size 2-by-2, 4-by-4 and */
/* 8-by-8) solved by this routine. */
/* INFO (output) INTEGER */
/* On exit, if INFO is set to */
/* =0: Successful exit */
/* <0: If INFO = -i, the i-th argument had an illegal value. */
/* >0: The matrix pairs (A, D) and (B, E) have common or very */
/* close eigenvalues. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c -= c_offset;
d_dim1 = *ldd;
d_offset = 1 + d_dim1 * 1;
d -= d_offset;
e_dim1 = *lde;
e_offset = 1 + e_dim1 * 1;
e -= e_offset;
f_dim1 = *ldf;
f_offset = 1 + f_dim1 * 1;
f -= f_offset;
--iwork;
/* Decode and test input parameters */
*info = 0;
ierr = 0;
notran = lsame_(trans, "N");
if (! notran && ! lsame_(trans, "T")) {
*info = -1;
} else if (*ijob < 0 || *ijob > 2) {
*info = -2;
} else if (*m <= 0) {
*info = -3;
} else if (*n <= 0) {
*info = -4;
} else if (*lda < max(1,*m)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -8;
} else if (*ldc < max(1,*m)) {
*info = -10;
} else if (*ldd < max(1,*m)) {
*info = -12;
} else if (*lde < max(1,*n)) {
*info = -14;
} else if (*ldf < max(1,*m)) {
*info = -16;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTGSY2", &i__1);
return;
}
/* Determine block structure of A */
*pq = 0;
p = 0;
i = 1;
L10:
if (i > *m) {
goto L20;
}
++p;
iwork[p] = i;
if (i == *m) {
goto L20;
}
if (a[i + 1 + i * a_dim1] != 0.) {
i += 2;
} else {
++i;
}
goto L10;
L20:
iwork[p + 1] = *m + 1;
/* Determine block structure of B */
q = p + 1;
j = 1;
L30:
if (j > *n) {
goto L40;
}
++q;
iwork[q] = j;
if (j == *n) {
goto L40;
}
if (b[j + 1 + j * b_dim1] != 0.) {
j += 2;
} else {
++j;
}
goto L30;
L40:
iwork[q + 1] = *n + 1;
*pq = p * (q - p - 1);
if (notran) {
/* Solve (I, J) - subsystem */
/* A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
/* D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
/* for I = P, P - 1, ..., 1; J = 1, 2, ..., Q */
*scale = 1.;
scaloc = 1.;
i__1 = q;
for (j = p + 2; j <= i__1; ++j) {
js = iwork[j];
jsp1 = js + 1;
je = iwork[j + 1] - 1;
nb = je - js + 1;
for (i = p; i >= 1; --i) {
is = iwork[i];
isp1 = is + 1;
ie = iwork[i + 1] - 1;
mb = ie - is + 1;
zdim = mb * nb << 1;
if (mb == 1 && nb == 1) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -