📄 dlascl.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Subroutine */ void dlascl_(type, kl, ku, cfrom, cto, m, n, a, lda, info)
const char *type;
const integer *kl, *ku;
doublereal *cfrom, *cto;
const integer *m, *n;
doublereal *a;
const integer *lda;
integer *info;
{
/* System generated locals */
integer i__1;
/* Local variables */
static logical done;
static doublereal ctoc;
static integer i, j;
static integer itype;
static doublereal cfrom1;
static doublereal cfromc;
static doublereal bignum, smlnum, mul, cto1;
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* Purpose */
/* ======= */
/* */
/* DLASCL multiplies the M by N real matrix A by the real scalar */
/* CTO/CFROM. This is done without over/underflow as long as the final */
/* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */
/* A may be full, upper triangular, lower triangular, upper Hessenberg, */
/* or banded. */
/* */
/* Arguments */
/* ========= */
/* */
/* TYPE (input) CHARACTER*1 */
/* TYPE indices the storage type of the input matrix. */
/* = 'G': A is a full matrix. */
/* = 'L': A is a lower triangular matrix. */
/* = 'U': A is an upper triangular matrix. */
/* = 'H': A is an upper Hessenberg matrix. */
/* = 'B': A is a symmetric band matrix with lower bandwidth KL */
/* and upper bandwidth KU and with the only the lower */
/* half stored. */
/* = 'Q': A is a symmetric band matrix with lower bandwidth KL */
/* and upper bandwidth KU and with the only the upper */
/* half stored. */
/* = 'Z': A is a band matrix with lower bandwidth KL and upper */
/* bandwidth KU. */
/* */
/* KL (input) INTEGER */
/* The lower bandwidth of A. Referenced only if TYPE = 'B', */
/* 'Q' or 'Z'. */
/* */
/* KU (input) INTEGER */
/* The upper bandwidth of A. Referenced only if TYPE = 'B', */
/* 'Q' or 'Z'. */
/* */
/* CFROM (input) DOUBLE PRECISION */
/* CTO (input) DOUBLE PRECISION */
/* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */
/* without over/underflow if the final result CTO*A(I,J)/CFROM */
/* can be represented without over/underflow. CFROM must be */
/* nonzero. */
/* */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,M) */
/* The matrix to be multiplied by CTO/CFROM. See TYPE for the */
/* storage type. */
/* */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* */
/* INFO (output) INTEGER */
/* 0 - successful exit */
/* <0 - if INFO = -i, the i-th argument had an illegal value. */
/* */
/* ===================================================================== */
/* Test the input arguments */
*info = 0;
if (lsame_(type, "G")) {
itype = 0;
} else if (lsame_(type, "L")) {
itype = 1;
} else if (lsame_(type, "U")) {
itype = 2;
} else if (lsame_(type, "H")) {
itype = 3;
} else if (lsame_(type, "B")) {
itype = 4;
} else if (lsame_(type, "Q")) {
itype = 5;
} else if (lsame_(type, "Z")) {
itype = 6;
} else {
itype = -1;
}
if (itype == -1) {
*info = -1;
} else if (*cfrom == 0.) {
*info = -4;
} else if (*m < 0) {
*info = -6;
} else if (*n < 0 || ( ( itype == 4 || itype == 5 ) && *n != *m) ) {
*info = -7;
} else if (itype <= 3 && *lda < max(1,*m)) {
*info = -9;
} else if (itype >= 4) {
if (*kl < 0 || *kl > max(*m - 1,0)) {
*info = -2;
} else /* if(complicated condition) */ {
if (*ku < 0 || *ku > max(*n - 1,0) || ( (itype == 4 || itype == 5) && *kl != *ku) ) {
*info = -3;
} else if ( (itype == 4 && *lda < *kl + 1 ) ||
(itype == 5 && *lda < * ku + 1 ) ||
(itype == 6 && *lda < (*kl << 1) + *ku + 1) ) {
*info = -9;
}
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DLASCL", &i__1);
return;
}
/* Quick return if possible */
if (*n == 0 || *m == 0) {
return;
}
/* Get machine parameters */
smlnum = dlamch_("S");
bignum = 1. / smlnum;
cfromc = *cfrom;
ctoc = *cto;
L10:
cfrom1 = cfromc * smlnum;
cto1 = ctoc / bignum;
if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) {
mul = smlnum;
done = FALSE_;
cfromc = cfrom1;
} else if (abs(cto1) > abs(cfromc)) {
mul = bignum;
done = FALSE_;
ctoc = cto1;
} else {
mul = ctoc / cfromc;
done = TRUE_;
}
if (itype == 0) {
/* Full matrix */
for (j = 0; j < *n; ++j) {
for (i = 0; i < *m; ++i) {
a[i + j * *lda] *= mul;
}
}
} else if (itype == 1) {
/* Lower triangular matrix */
for (j = 0; j < *n; ++j) {
for (i = j; i < *m; ++i) {
a[i + j * *lda] *= mul;
}
}
} else if (itype == 2) {
/* Upper triangular matrix */
for (j = 0; j < *n; ++j) {
for (i = 0; i <= j && i < *m; ++i) {
a[i + j * *lda] *= mul;
}
}
} else if (itype == 3) {
/* Upper Hessenberg matrix */
for (j = 0; j < *n; ++j) {
for (i = 0; i <= j+1 && i < *m; ++i) {
a[i + j * *lda] *= mul;
}
}
} else if (itype == 4) {
/* Lower half of a symmetric band matrix */
for (j = 0; j < *n; ++j) {
for (i = 0; i < min(*kl+1,*n-j); ++i) {
a[i + j * *lda] *= mul;
}
}
} else if (itype == 5) {
/* Upper half of a symmetric band matrix */
for (j = 0; j < *n; ++j) {
for (i = max(*ku-j,0); i <= *ku; ++i) {
a[i + j * *lda] *= mul;
}
}
} else if (itype == 6) {
/* Band matrix */
for (j = 0; j < *n; ++j) {
for (i = max(*kl + *ku - j,*kl); i <= *kl*2 + *ku && i < *kl + *ku + *m - j; ++i) {
a[i + j * *lda] *= mul;
}
}
}
if (! done) {
goto L10;
}
} /* dlascl_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -