📄 sgerq2.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Subroutine */ void sgerq2_(const integer *m, const integer *n, real *a, const integer *lda,
real *tau, real *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
static integer i, k;
static real aii;
/* -- LAPACK routine (version 2.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* February 29, 1992 */
/* Purpose */
/* ======= */
/* */
/* SGERQ2 computes an RQ factorization of a real m by n matrix A: */
/* A = R * Q. */
/* */
/* Arguments */
/* ========= */
/* */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. */
/* */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. */
/* */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the m by n matrix A. */
/* On exit, if m <= n, the upper triangle of the subarray */
/* A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; */
/* if m >= n, the elements on and above the (m-n)-th subdiagonal */
/* contain the m by n upper trapezoidal matrix R; the remaining */
/* elements, with the array TAU, represent the orthogonal matrix */
/* Q as a product of elementary reflectors (see Further */
/* Details). */
/* */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,M). */
/* */
/* TAU (output) REAL array, dimension (min(M,N)) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* */
/* WORK (workspace) REAL array, dimension (M) */
/* */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* */
/* Further Details */
/* =============== */
/* */
/* The matrix Q is represented as a product of elementary reflectors */
/* */
/* Q = H(1) H(2) . . . H(k), where k = min(m,n). */
/* */
/* Each H(i) has the form */
/* */
/* H(i) = I - tau * v * v' */
/* */
/* where tau is a real scalar, and v is a real vector with */
/* v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in */
/* A(m-k+i,1:n-k+i-1), and tau in TAU(i). */
/* */
/* ===================================================================== */
/* Parameter adjustments */
--work;
--tau;
a_dim1 = *lda;
a_offset = a_dim1 + 1;
a -= a_offset;
/* Test the input arguments */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGERQ2", &i__1);
return;
}
k = min(*m,*n);
for (i = k; i >= 1; --i) {
/* Generate elementary reflector H(i) to annihilate */
/* A(m-k+i,1:n-k+i-1) */
i__1 = *n - k + i;
slarfg_(&i__1, &a[*m - k + i + (*n - k + i) * a_dim1], &a[*m - k + i + a_dim1], lda, &tau[i]);
/* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right */
aii = a[*m - k + i + (*n - k + i) * a_dim1];
a[*m - k + i + (*n - k + i) * a_dim1] = 1.f;
i__1 = *m - k + i - 1;
i__2 = *n - k + i;
slarf_("Right", &i__1, &i__2, &a[*m - k + i + a_dim1], lda, &tau[i], &a[a_offset], lda, &work[1]);
a[*m - k + i + (*n - k + i) * a_dim1] = aii;
}
} /* sgerq2_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -