📄 dlatdf.c
字号:
#include "f2c.h"
#include "netlib.h"
extern double sqrt(double); /* #include <math.h> */
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b23 = 1.;
static doublereal c_b37 = -1.;
/* Subroutine */ void dlatdf_(ijob, n, z, ldz, rhs, rdsum, rdscal, ipiv, jpiv)
integer *ijob, *n;
doublereal *z;
integer *ldz;
doublereal *rhs, *rdsum, *rdscal;
integer *ipiv, *jpiv;
{
/* System generated locals */
integer nm1;
/* Local variables */
static integer info;
static doublereal temp, work[32];
static integer i, j, k;
static doublereal pmone;
static doublereal sminu;
static integer iwork[8];
static doublereal splus;
static doublereal bm, bp;
static doublereal xm[8], xp[8];
/* -- LAPACK auxiliary routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* Purpose */
/* ======= */
/* */
/* DLATDF uses the LU factorization of the n-by-n matrix Z computed by */
/* DGETC2 and computes a contribution to the reciprocal Dif-estimate */
/* by solving Z * x = b for x, and choosing the r.h.s. b such that */
/* the norm of x is as large as possible. On entry RHS = b holds the */
/* contribution from earlier solved sub-systems, and on return RHS = x. */
/* */
/* The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q, */
/* where P and Q are permutation matrices. L is lower triangular with */
/* unit diagonal elements and U is upper triangular. */
/* */
/* Arguments */
/* ========= */
/* */
/* IJOB (input) INTEGER */
/* IJOB = 2: First compute an approximative null-vector e */
/* of Z using DGECON, e is normalized and solve for */
/* Zx = +-e - f with the sign giving the greater value */
/* of 2-norm(x). About 5 times as expensive as Default. */
/* IJOB .ne. 2: Local look ahead strategy where all entries of */
/* the r.h.s. b is choosen as either +1 or -1 (Default). */
/* */
/* N (input) INTEGER */
/* The number of columns of the matrix Z. */
/* */
/* Z (input) DOUBLE PRECISION array, dimension (LDZ, N) */
/* On entry, the LU part of the factorization of the n-by-n */
/* matrix Z computed by DGETC2: Z = P * L * U * Q */
/* */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDA >= max(1, N). */
/* */
/* RHS (input/output) DOUBLE PRECISION array, dimension N. */
/* On entry, RHS contains contributions from other subsystems. */
/* On exit, RHS contains the solution of the subsystem with */
/* entries acoording to the value of IJOB (see above). */
/* */
/* RDSUM (input/output) DOUBLE PRECISION */
/* On entry, the sum of squares of computed contributions to */
/* the Dif-estimate under computation by DTGSYL, where the */
/* scaling factor RDSCAL (see below) has been factored out. */
/* On exit, the corresponding sum of squares updated with the */
/* contributions from the current sub-system. */
/* If TRANS = 'T' RDSUM is not touched. */
/* NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. */
/* */
/* RDSCAL (input/output) DOUBLE PRECISION */
/* On entry, scaling factor used to prevent overflow in RDSUM. */
/* On exit, RDSCAL is updated w.r.t. the current contributions */
/* in RDSUM. */
/* If TRANS = 'T', RDSCAL is not touched. */
/* NOTE: RDSCAL only makes sense when DTGSY2 is called by */
/* DTGSYL. */
/* */
/* IPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= i <= N, row i of the */
/* matrix has been interchanged with row IPIV(i). */
/* */
/* JPIV (input) INTEGER array, dimension (N). */
/* The pivot indices; for 1 <= j <= N, column j of the */
/* matrix has been interchanged with column JPIV(j). */
/* */
/* Further Details */
/* =============== */
/* */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* */
/* This routine is a further developed implementation of algorithm */
/* BSOLVE in [1] using complete pivoting in the LU factorization. */
/* */
/* [1] Bo Kagstrom and Lars Westin, */
/* Generalized Schur Methods with Condition Estimators for */
/* Solving the Generalized Sylvester Equation, IEEE Transactions */
/* on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */
/* */
/* [2] Peter Poromaa, */
/* On Efficient and Robust Estimators for the Separation */
/* between two Regular Matrix Pairs with Applications in */
/* Condition Estimation. Report IMINF-95.05, Departement of */
/* Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */
/* */
/* ===================================================================== */
if (*ijob != 2) {
/* Apply permutations IPIV to RHS */
nm1 = *n - 1;
dlaswp_(&c__1, rhs, ldz, &c__1, &nm1, ipiv, &c__1);
/* Solve for L-part choosing RHS either to +1 or -1. */
pmone = -1.;
for (j = 0; j < *n-1; ++j) {
bp = rhs[j] + 1.;
bm = rhs[j] - 1.;
splus = 1.;
/* Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */
/* SMIN computed more efficiently than in BSOLVE [1]. */
nm1 = *n - j - 1;
splus += ddot_(&nm1, &z[j+1 + j * *ldz], &c__1, &z[j+1 + j * *ldz], &c__1);
sminu = ddot_(&nm1, &z[j+1 + j * *ldz], &c__1, &rhs[j+1], &c__1);
splus *= rhs[j];
if (splus > sminu) {
rhs[j] = bp;
} else if (sminu > splus) {
rhs[j] = bm;
} else {
/* In this case the updating sums are equal and we can */
/* choose RHS(J) +1 or -1. The first time this happens */
/* we choose -1, thereafter +1. This is a simple way to */
/* get good estimates of matrices like Byers well-known */
/* example (see [1]). (Not done in BSOLVE.) */
rhs[j] += pmone;
pmone = 1.;
}
/* Compute the remaining r.h.s. */
temp = -rhs[j];
daxpy_(&nm1, &temp, &z[j+1 + j * *ldz], &c__1, &rhs[j+1], &c__1);
}
/* Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */
/* in BSOLVE and will hopefully give us a better estimate because */
/* any ill-conditioning of the original matrix is transfered to U */
/* and not to L. U(N, N) is an approximation to sigma_min(LU). */
nm1 = *n - 1;
dcopy_(&nm1, rhs, &c__1, xp, &c__1);
xp[nm1] = rhs[nm1] + 1.;
rhs[nm1] += -1.;
splus = 0.;
sminu = 0.;
for (i = *n-1; i >= 0; --i) {
temp = 1. / z[i + i * *ldz];
xp[i] *= temp;
rhs[i] *= temp;
for (k = i+1; k < *n; ++k) {
xp[i] -= xp[k] * (z[i + k * *ldz] * temp);
rhs[i] -= rhs[k] * (z[i + k * *ldz] * temp);
}
splus += abs(xp[i]);
sminu += abs(rhs[i]);
}
if (splus > sminu) {
dcopy_(n, xp, &c__1, rhs, &c__1);
}
/* Apply the permutations JPIV to the computed solution (RHS) */
dlaswp_(&c__1, rhs, ldz, &c__1, &nm1, jpiv, &c_n1);
/* Compute the sum of squares */
dlassq_(n, rhs, &c__1, rdscal, rdsum);
} else {
/* IJOB = 2, Compute approximate nullvector XM of Z */
dgecon_("I", n, z, ldz, &c_b23, &temp, work, iwork, &info);
dcopy_(n, &work[*n], &c__1, xm, &c__1);
/* Compute RHS */
nm1 = *n - 1;
dlaswp_(&c__1, xm, ldz, &c__1, &nm1, ipiv, &c_n1);
temp = 1. / sqrt(ddot_(n, xm, &c__1, xm, &c__1));
dscal_(n, &temp, xm, &c__1);
dcopy_(n, xm, &c__1, xp, &c__1);
daxpy_(n, &c_b23, rhs, &c__1, xp, &c__1);
daxpy_(n, &c_b37, xm, &c__1, rhs, &c__1);
dgesc2_(n, z, ldz, rhs, ipiv, jpiv, &temp);
dgesc2_(n, z, ldz, xp, ipiv, jpiv, &temp);
if (dasum_(n, xp, &c__1) > dasum_(n, rhs, &c__1)) {
dcopy_(n, xp, &c__1, rhs, &c__1);
}
/* Compute the sum of squares */
dlassq_(n, rhs, &c__1, rdscal, rdsum);
}
} /* dlatdf_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -