📄 dgghrd.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Table of constant values */
static doublereal c_b10 = 0.;
static doublereal c_b11 = 1.;
static integer c__1 = 1;
/* Subroutine */ void dgghrd_(compq, compz, n, ilo, ihi, a, lda, b, ldb, q, ldq, z, ldz, info)
const char *compq, *compz;
const integer *n;
integer *ilo, *ihi;
doublereal *a;
const integer *lda;
doublereal *b;
const integer *ldb;
doublereal *q;
const integer *ldq;
doublereal *z;
const integer *ldz;
integer *info;
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, z_offset, i__1;
/* Local variables */
static integer jcol;
static doublereal temp;
static integer jrow;
static doublereal c, s;
static integer icompq, icompz;
static logical ilq, ilz;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* Purpose */
/* ======= */
/* DGGHRD reduces a pair of real matrices (A,B) to generalized upper */
/* Hessenberg form using orthogonal transformations, where A is a */
/* general matrix and B is upper triangular: Q' * A * Z = H and */
/* Q' * B * Z = T, where H is upper Hessenberg, T is upper triangular, */
/* and Q and Z are orthogonal, and ' means transpose. */
/* The orthogonal matrices Q and Z are determined as products of Givens */
/* rotations. They may either be formed explicitly, or they may be */
/* postmultiplied into input matrices Q1 and Z1, so that */
/* Q1 * A * Z1' = (Q1*Q) * H * (Z1*Z)' */
/* Q1 * B * Z1' = (Q1*Q) * T * (Z1*Z)' */
/* Arguments */
/* ========= */
/* COMPQ (input) CHARACTER*1 */
/* = 'N': do not compute Q; */
/* = 'I': Q is initialized to the unit matrix, and the */
/* orthogonal matrix Q is returned; */
/* = 'V': Q must contain an orthogonal matrix Q1 on entry, */
/* and the product Q1*Q is returned. */
/* COMPZ (input) CHARACTER*1 */
/* = 'N': do not compute Z; */
/* = 'I': Z is initialized to the unit matrix, and the */
/* orthogonal matrix Z is returned; */
/* = 'V': Z must contain an orthogonal matrix Z1 on entry, */
/* and the product Z1*Z is returned. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows and */
/* columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally set */
/* by a previous call to DGGBAL; otherwise they should be set */
/* to 1 and N respectively. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/* On entry, the N-by-N general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* rest is set to zero. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/* On entry, the N-by-N upper triangular matrix B. */
/* On exit, the upper triangular matrix T = Q' B Z. The */
/* elements below the diagonal are set to zero. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* Q (input/output) DOUBLE PRECISION array, dimension (LDQ, N) */
/* If COMPQ='N': Q is not referenced. */
/* If COMPQ='I': on entry, Q need not be set, and on exit it */
/* contains the orthogonal matrix Q, where Q' */
/* is the product of the Givens transformations */
/* which are applied to A and B on the left. */
/* If COMPQ='V': on entry, Q must contain an orthogonal matrix */
/* Q1, and on exit this is overwritten by Q1*Q. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. */
/* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */
/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N) */
/* If COMPZ='N': Z is not referenced. */
/* If COMPZ='I': on entry, Z need not be set, and on exit it */
/* contains the orthogonal matrix Z, which is */
/* the product of the Givens transformations */
/* which are applied to A and B on the right. */
/* If COMPZ='V': on entry, Z must contain an orthogonal matrix */
/* Z1, and on exit this is overwritten by Z1*Z. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. */
/* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* This routine reduces A to Hessenberg and B to triangular form by */
/* an unblocked reduction, as described in _Matrix_Computations_, */
/* by Golub and Van Loan (Johns Hopkins Press.) */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z -= z_offset;
/* Decode COMPQ */
if (lsame_(compq, "N")) {
ilq = FALSE_;
icompq = 1;
} else if (lsame_(compq, "V")) {
ilq = TRUE_;
icompq = 2;
} else if (lsame_(compq, "I")) {
ilq = TRUE_;
icompq = 3;
} else {
icompq = 0;
}
/* Decode COMPZ */
if (lsame_(compz, "N")) {
ilz = FALSE_;
icompz = 1;
} else if (lsame_(compz, "V")) {
ilz = TRUE_;
icompz = 2;
} else if (lsame_(compz, "I")) {
ilz = TRUE_;
icompz = 3;
} else {
icompz = 0;
}
/* Test the input parameters. */
*info = 0;
if (icompq <= 0) {
*info = -1;
} else if (icompz <= 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ilo < 1) {
*info = -4;
} else if (*ihi > *n || *ihi < *ilo - 1) {
*info = -5;
} else if (*lda < max(1,*n)) {
*info = -7;
} else if (*ldb < max(1,*n)) {
*info = -9;
} else if ( (ilq && *ldq < *n ) || *ldq < 1) {
*info = -11;
} else if ( (ilz && *ldz < *n ) || *ldz < 1) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGGHRD", &i__1);
return;
}
/* Initialize Q and Z if desired. */
if (icompq == 3) {
dlaset_("Full", n, n, &c_b10, &c_b11, &q[q_offset], ldq);
}
if (icompz == 3) {
dlaset_("Full", n, n, &c_b10, &c_b11, &z[z_offset], ldz);
}
/* Quick return if possible */
if (*n <= 1) {
return;
}
/* Zero out lower triangle of B */
for (jcol = 1; jcol <= *n - 1; ++jcol) {
for (jrow = jcol + 1; jrow <= *n; ++jrow) {
b[jrow + jcol * b_dim1] = 0.;
}
}
/* Reduce A and B */
for (jcol = *ilo; jcol <= *ihi - 2; ++jcol) {
for (jrow = *ihi; jrow >= jcol + 2; --jrow) {
/* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */
temp = a[jrow - 1 + jcol * a_dim1];
dlartg_(&temp, &a[jrow + jcol * a_dim1], &c, &s, &a[jrow - 1 + jcol * a_dim1]);
a[jrow + jcol * a_dim1] = 0.;
i__1 = *n - jcol;
drot_(&i__1, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + (jcol + 1) * a_dim1], lda, &c, &s);
i__1 = *n + 2 - jrow;
drot_(&i__1, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + (jrow - 1) * b_dim1], ldb, &c, &s);
if (ilq) {
drot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1 + 1], &c__1, &c, &s);
}
/* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */
temp = b[jrow + jrow * b_dim1];
dlartg_(&temp, &b[jrow + (jrow - 1) * b_dim1], &c, &s, &b[jrow + jrow * b_dim1]);
b[jrow + (jrow - 1) * b_dim1] = 0.;
drot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 + 1], &c__1, &c, &s);
i__1 = jrow - 1;
drot_(&i__1, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1 + 1], &c__1, &c, &s);
if (ilz) {
drot_(n, &z[jrow * z_dim1 + 1], &c__1, &z[(jrow - 1) * z_dim1 + 1], &c__1, &c, &s);
}
}
}
} /* dgghrd_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -