📄 dtgexc.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__2 = 2;
/* Subroutine */ void dtgexc_(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, work, lwork, info)
logical *wantq, *wantz;
integer *n;
doublereal *a;
integer *lda;
doublereal *b;
integer *ldb;
doublereal *q;
integer *ldq;
doublereal *z;
integer *ldz, *ifst, *ilst;
doublereal *work;
integer *lwork, *info;
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, z_offset, i__1;
/* Local variables */
static integer here, lwmin;
static integer nbnext;
static logical lquery;
static integer nbf, nbl;
/* -- LAPACK routine (version 3.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* June 30, 1999 */
/* Purpose */
/* ======= */
/* DTGEXC reorders the generalized real Schur decomposition of a real */
/* matrix pair (A,B) using an orthogonal equivalence transformation */
/* (A, B) = Q * (A, B) * Z', */
/* so that the diagonal block of (A, B) with row index IFST is moved */
/* to row ILST. */
/* (A, B) must be in generalized real Schur canonical form (as returned */
/* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
/* diagonal blocks. B is upper triangular. */
/* Optionally, the matrices Q and Z of generalized Schur vectors are */
/* updated. */
/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */
/* Arguments */
/* ========= */
/* WANTQ (input) LOGICAL */
/* .TRUE. : update the left transformation matrix Q; */
/* .FALSE.: do not update Q. */
/* WANTZ (input) LOGICAL */
/* .TRUE. : update the right transformation matrix Z; */
/* .FALSE.: do not update Z. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the matrix A in generalized real Schur canonical */
/* form. */
/* On exit, the updated matrix A, again in generalized */
/* real Schur canonical form. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
/* On entry, the matrix B in generalized real Schur canonical */
/* form (A,B). */
/* On exit, the updated matrix B, again in generalized */
/* real Schur canonical form (A,B). */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/* On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
/* On exit, the updated matrix Q. */
/* If WANTQ = .FALSE., Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= 1. */
/* If WANTQ = .TRUE., LDQ >= N. */
/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/* On entry, if WANTZ = .TRUE., the orthogonal matrix Z. */
/* On exit, the updated matrix Z. */
/* If WANTZ = .FALSE., Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1. */
/* If WANTZ = .TRUE., LDZ >= N. */
/* IFST (input/output) INTEGER */
/* ILST (input/output) INTEGER */
/* Specify the reordering of the diagonal blocks of (A, B). */
/* The block with row index IFST is moved to row ILST, by a */
/* sequence of swapping between adjacent blocks. */
/* On exit, if IFST pointed on entry to the second row of */
/* a 2-by-2 block, it is changed to point to the first row; */
/* ILST always points to the first row of the block in its */
/* final position (which may differ from its input value by */
/* +1 or -1). 1 <= IFST, ILST <= N. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= 4*N + 16. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* =0: successful exit. */
/* <0: if INFO = -i, the i-th argument had an illegal value. */
/* =1: The transformed matrix pair (A, B) would be too far */
/* from generalized Schur form; the problem is ill- */
/* conditioned. (A, B) may have been partially reordered, */
/* and ILST points to the first row of the current */
/* position of the block being moved. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1 * 1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z -= z_offset;
--work;
/* Decode and test input arguments. */
*info = 0;
lwmin = max(1, (*n << 2) + 16);
lquery = *lwork == -1;
if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -7;
} else if (*ldq < 1 || (*wantq && *ldq < max(1,*n))) {
*info = -9;
} else if (*ldz < 1 || (*wantz && *ldz < max(1,*n))) {
*info = -11;
} else if (*ifst < 1 || *ifst > *n) {
*info = -12;
} else if (*ilst < 1 || *ilst > *n) {
*info = -13;
} else if (*lwork < lwmin && ! lquery) {
*info = -15;
}
if (*info == 0) {
work[1] = (doublereal) lwmin;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTGEXC", &i__1);
return;
} else if (lquery) {
return;
}
/* Quick return if possible */
if (*n <= 1) {
return;
}
/* Determine the first row of the specified block and find out */
/* if it is 1-by-1 or 2-by-2. */
if (*ifst > 1) {
if (a[*ifst + (*ifst - 1) * a_dim1] != 0.) {
--(*ifst);
}
}
nbf = 1;
if (*ifst < *n) {
if (a[*ifst + 1 + *ifst * a_dim1] != 0.) {
nbf = 2;
}
}
/* Determine the first row of the final block */
/* and find out if it is 1-by-1 or 2-by-2. */
if (*ilst > 1) {
if (a[*ilst + (*ilst - 1) * a_dim1] != 0.) {
--(*ilst);
}
}
nbl = 1;
if (*ilst < *n) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -