📄 zlange.c
字号:
#include "f2c.h"
#include "netlib.h"
extern double sqrt(double); /* #include <math.h> */
/* Modified by Peter Vanroose, June 2001: manual optimisation and clean-up */
/* Table of constant values */
static integer c__1 = 1;
doublereal zlange_(norm, m, n, a, lda, work)
const char *norm;
const integer *m, *n;
doublecomplex *a;
const integer *lda;
doublereal *work;
{
/* Local variables */
static integer i, j;
static doublereal scale;
static doublereal value;
static doublereal sum;
/* -- LAPACK auxiliary routine (version 2.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* October 31, 1992 */
/* ===================================================================== */
/* */
/* Purpose */
/* ======= */
/* */
/* ZLANGE returns the value of the one norm, or the Frobenius norm, or*/
/* the infinity norm, or the element of largest absolute value of a*/
/* complex matrix A. */
/* */
/* Description */
/* =========== */
/* */
/* ZLANGE returns the value */
/* */
/* ZLANGE = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a matrix norm. */
/* */
/* Arguments */
/* ========= */
/* */
/* NORM (input) CHARACTER*1 */
/* Specifies the value to be returned in ZLANGE as described */
/* above. */
/* */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0. When M = 0, */
/* ZLANGE is set to zero. */
/* */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0. When N = 0, */
/* ZLANGE is set to zero. */
/* */
/* A (input) COMPLEX*16 array, dimension (LDA,N) */
/* The m by n matrix A. */
/* */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(M,1). */
/* */
/* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK), */
/* where LWORK >= M when NORM = 'I'; otherwise, WORK is not */
/* referenced. */
/* */
/* ===================================================================== */
if (min(*m,*n) == 0) {
value = 0.;
} else if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
value = 0.;
for (j = 0; j < *n; ++j) {
for (i = 0; i < *m; ++i) {
value = max(value, z_abs(&a[i + j * *lda]));
}
}
} else if (lsame_(norm, "O") || *norm == '1') {
/* Find norm1(A). */
value = 0.;
for (j = 0; j < *n; ++j) {
sum = 0.;
for (i = 0; i < *m; ++i) {
sum += z_abs(&a[i + j * *lda]);
}
value = max(value,sum);
}
} else if (lsame_(norm, "I")) {
/* Find normI(A). */
for (i = 0; i < *m; ++i) {
work[i] = 0.;
}
for (j = 0; j < *n; ++j) {
for (i = 0; i < *m; ++i) {
work[i] += z_abs(&a[i + j * *lda]);
}
}
value = 0.;
for (i = 0; i < *m; ++i) {
value = max(value, work[i]);
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
scale = 0.;
sum = 1.;
for (j = 0; j < *n; ++j) {
zlassq_(m, &a[j * *lda], &c__1, &scale, &sum);
}
value = scale * sqrt(sum);
}
return value;
} /* zlange_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -