📄 zunghr.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Modified by Peter Vanroose, June 2001: manual optimisation and clean-up */
/* Subroutine */ void zunghr_(n, ilo, ihi, a, lda, tau, work, lwork, info)
const integer *n;
integer *ilo, *ihi;
doublecomplex *a;
const integer *lda;
const doublecomplex *tau;
doublecomplex *work;
const integer *lwork;
integer *info;
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
static integer i, j, iinfo, nh;
/* -- LAPACK routine (version 2.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* ===================================================================== */
/* */
/* Purpose */
/* ======= */
/* */
/* ZUNGHR generates a complex unitary matrix Q which is defined as the */
/* product of IHI-ILO elementary reflectors of order N, as returned by */
/* ZGEHRD: */
/* */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* */
/* Arguments */
/* ========= */
/* */
/* N (input) INTEGER */
/* The order of the matrix Q. N >= 0. */
/* */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* ILO and IHI must have the same values as in the previous call */
/* of ZGEHRD. Q is equal to the unit matrix except in the */
/* submatrix Q(ilo+1:ihi,ilo+1:ihi). */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the vectors which define the elementary reflectors, */
/* as returned by ZGEHRD. */
/* On exit, the N-by-N unitary matrix Q. */
/* */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* */
/* TAU (input) COMPLEX*16 array, dimension (N-1) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by ZGEHRD. */
/* */
/* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= IHI-ILO. */
/* For optimum performance LWORK >= (IHI-ILO)*NB, where NB is */
/* the optimal blocksize. */
/* */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* */
/* ===================================================================== */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -2;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else /* if(complicated condition) */ {
if (*lwork < max(1, *ihi - *ilo)) {
*info = -8;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZUNGHR", &i__1);
return;
}
/* Quick return if possible */
if (*n == 0) {
work[0].r = 1., work[0].i = 0.;
return;
}
/* Shift the vectors which define the elementary reflectors one */
/* column to the right, and set the first ilo and the last n-ihi */
/* rows and columns to those of the unit matrix */
for (j = *ihi - 1; j >= *ilo; --j) {
for (i = 0; i < j; ++i) {
i__1 = i + j * *lda;
a[i__1].r = 0., a[i__1].i = 0.;
}
for (i = j + 1; i < *ihi; ++i) {
i__1 = i + j * *lda;
i__2 = i + (j-1) * *lda;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
}
for (i = *ihi; i < *n; ++i) {
i__1 = i + j * *lda;
a[i__1].r = 0., a[i__1].i = 0.;
}
}
for (j = 0; j < *ilo; ++j) {
for (i = 0; i < *n; ++i) {
i__1 = i + j * *lda;
a[i__1].r = 0., a[i__1].i = 0.;
}
i__1 = j + j * *lda;
a[i__1].r = 1., a[i__1].i = 0.;
}
for (j = *ihi; j < *n; ++j) {
for (i = 0; i < *n; ++i) {
i__1 = i + j * *lda;
a[i__1].r = 0., a[i__1].i = 0.;
}
i__1 = j + j * *lda;
a[i__1].r = 1., a[i__1].i = 0.;
}
nh = *ihi - *ilo;
if (nh > 0) {
/* Generate Q(ilo+1:ihi,ilo+1:ihi) */
zungqr_(&nh, &nh, &nh, &a[*ilo + *ilo * *lda], lda, &tau[*ilo-1], work, lwork, &iinfo);
}
} /* zunghr_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -