📄 dqrdc.c
字号:
#include "f2c.h"
#include "netlib.h"
extern double sqrt(double); /* #include <math.h> */
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ void dqrdc_(x, ldx, n, p, qraux, jpvt, work, job)
doublereal *x;
const integer *ldx, *n, *p;
doublereal *qraux;
integer *jpvt;
doublereal *work;
const integer *job;
{
/* System generated locals */
integer i__1;
doublereal d__1;
/* Local variables */
static logical negj;
static integer maxj;
static integer j, l;
static doublereal t;
static logical swapj;
static doublereal nrmxl;
static integer jp, pl, pu;
static doublereal tt, maxnrm;
/* dqrdc uses householder transformations to compute the qr */
/* factorization of an n by p matrix x. column pivoting */
/* based on the 2-norms of the reduced columns may be */
/* performed at the users option. */
/* */
/* on entry */
/* */
/* x double precision(ldx,p), where ldx .ge. n. */
/* x contains the matrix whose decomposition is to be */
/* computed. */
/* */
/* ldx integer. */
/* ldx is the leading dimension of the array x. */
/* */
/* n integer. */
/* n is the number of rows of the matrix x. */
/* */
/* p integer. */
/* p is the number of columns of the matrix x. */
/* */
/* jpvt integer(p). */
/* jpvt contains integers that control the selection */
/* of the pivot columns. the k-th column x(k) of x */
/* is placed in one of three classes according to the */
/* value of jpvt(k). */
/* */
/* if jpvt(k) .gt. 0, then x(k) is an initial */
/* column. */
/* */
/* if jpvt(k) .eq. 0, then x(k) is a free column. */
/* */
/* if jpvt(k) .lt. 0, then x(k) is a final column. */
/* */
/* before the decomposition is computed, initial columns */
/* are moved to the beginning of the array x and final */
/* columns to the end. both initial and final columns */
/* are frozen in place during the computation and only */
/* free columns are moved. at the k-th stage of the */
/* reduction, if x(k) is occupied by a free column */
/* it is interchanged with the free column of largest */
/* reduced norm. jpvt is not referenced if */
/* job .eq. 0. */
/* */
/* work double precision(p). */
/* work is a work array. work is not referenced if */
/* job .eq. 0. */
/* */
/* job integer. */
/* job is an integer that initiates column pivoting. */
/* if job .eq. 0, no pivoting is done. */
/* if job .ne. 0, pivoting is done. */
/* */
/* on return */
/* */
/* x x contains in its upper triangle the upper */
/* triangular matrix r of the qr factorization. */
/* below its diagonal x contains information from */
/* which the orthogonal part of the decomposition */
/* can be recovered. note that if pivoting has */
/* been requested, the decomposition is not that */
/* of the original matrix x but that of x */
/* with its columns permuted as described by jpvt. */
/* */
/* qraux double precision(p). */
/* qraux contains further information required to recover */
/* the orthogonal part of the decomposition. */
/* */
/* jpvt jpvt(k) contains the index of the column of the */
/* original matrix that has been interchanged into */
/* the k-th column, if pivoting was requested. */
/* */
/* linpack. this version dated 08/14/78 . */
/* g.w. stewart, university of maryland, argonne national lab. */
/* dqrdc uses the following functions and subprograms. */
/* */
/* blas daxpy,ddot,dscal,dswap,dnrm2 */
/* fortran dabs,dmax1,min0,dsqrt */
/* internal variables */
pl = 0;
pu = -1;
if (*job == 0) {
goto L60;
}
/* pivoting has been requested. rearrange the columns */
/* according to jpvt. */
for (j = 0; j < *p; ++j) {
swapj = jpvt[j] > 0;
negj = jpvt[j] < 0;
jpvt[j] = j+1;
if (negj) {
jpvt[j] = -j-1;
}
if (! swapj) {
continue;
}
if (j != pl) {
dswap_(n, &x[pl * *ldx], &c__1, &x[j * *ldx], &c__1);
}
jpvt[j] = jpvt[pl];
jpvt[pl] = j+1;
++pl;
}
pu = *p - 1;
for (j = pu; j >= 0; --j) {
if (jpvt[j] >= 0) {
continue;
}
jpvt[j] = -jpvt[j];
if (j != pu) {
dswap_(n, &x[pu * *ldx], &c__1, &x[j * *ldx], &c__1);
jp = jpvt[pu];
jpvt[pu] = jpvt[j];
jpvt[j] = jp;
}
--pu;
}
L60:
/* compute the norms of the free columns. */
for (j = pl; j <= pu; ++j) {
qraux[j] = dnrm2_(n, &x[j * *ldx], &c__1);
work[j] = qraux[j];
}
/* perform the householder reduction of x. */
for (l = 0; l < *n && l < *p; ++l) {
if (l < pl || l >= pu) {
goto L120;
}
/* locate the column of largest norm and bring it */
/* into the pivot position. */
maxnrm = 0.;
maxj = l;
for (j = l; j <= pu; ++j) {
if (qraux[j] <= maxnrm) {
continue;
}
maxnrm = qraux[j];
maxj = j;
}
if (maxj != l) {
dswap_(n, &x[l * *ldx], &c__1, &x[maxj * *ldx], &c__1);
qraux[maxj] = qraux[l];
work[maxj] = work[l];
jp = jpvt[maxj]; jpvt[maxj] = jpvt[l]; jpvt[l] = jp;
}
L120:
qraux[l] = 0.;
if (l+1 == *n) {
continue;
}
/* compute the householder transformation for column l. */
i__1 = *n - l;
nrmxl = dnrm2_(&i__1, &x[l + l * *ldx], &c__1);
if (nrmxl == 0.) {
continue;
}
if (x[l + l * *ldx] != 0.) {
nrmxl = d_sign(&nrmxl, &x[l + l * *ldx]);
}
i__1 = *n - l;
d__1 = 1. / nrmxl;
dscal_(&i__1, &d__1, &x[l + l * *ldx], &c__1);
x[l + l * *ldx] += 1.;
/* apply the transformation to the remaining columns, */
/* updating the norms. */
for (j = l+1; j < *p; ++j) {
i__1 = *n - l;
t = -ddot_(&i__1, &x[l + l * *ldx], &c__1,
&x[l + j * *ldx], &c__1) / x[l + l * *ldx];
daxpy_(&i__1, &t, &x[l + l * *ldx], &c__1, &x[l + j * *ldx], &c__1);
if (j < pl || j > pu) {
continue;
}
if (qraux[j] == 0.) {
continue;
}
tt = abs(x[l + j * *ldx]) / qraux[j];
tt = 1. - tt * tt;
tt = max(tt,0.);
t = tt;
d__1 = qraux[j] / work[j];
tt = tt * .05 * d__1 * d__1 + 1.;
if (tt != 1.) {
qraux[j] *= sqrt(t);
continue;
}
i__1 = *n - l - 1;
qraux[j] = dnrm2_(&i__1, &x[l + 1 + j * *ldx], &c__1);
work[j] = qraux[j];
}
/* save the transformation. */
qraux[l] = x[l + l * *ldx];
x[l + l * *ldx] = -nrmxl;
}
} /* dqrdc_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -