📄 zgehrd.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Modified by Peter Vanroose, June 2001: manual optimisation and clean-up */
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
static integer c__65 = 65;
static doublecomplex c_b21 = {1.,0.};
static doublecomplex c_b24 = {-1.,0.};
/* Subroutine */ void zgehrd_(n, ilo, ihi, a, lda, tau, work, lwork, info)
const integer *n;
integer *ilo, *ihi;
doublecomplex *a;
const integer *lda;
doublecomplex *tau, *work;
integer *lwork, *info;
{
/* System generated locals */
integer i__1, i__2, i__3, i__4;
/* Local variables */
static integer i;
static doublecomplex t[4160] /* was [65][64] */;
static integer nbmin, iinfo;
static integer ib;
static doublecomplex ei;
static integer nb, nh, nx;
static integer ldwork, iws;
/* -- LAPACK routine (version 2.0) -- */
/* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */
/* Courant Institute, Argonne National Lab, and Rice University */
/* September 30, 1994 */
/* ===================================================================== */
/* */
/* Purpose */
/* ======= */
/* */
/* ZGEHRD reduces a complex general matrix A to upper Hessenberg form H */
/* by a unitary similarity transformation: Q' * A * Q = H . */
/* */
/* Arguments */
/* ========= */
/* */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows */
/* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* set by a previous call to ZGEBAL; otherwise they should be */
/* set to 1 and N respectively. See Further Details. */
/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */
/* */
/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
/* On entry, the N-by-N general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* elements below the first subdiagonal, with the array TAU, */
/* represent the unitary matrix Q as a product of elementary */
/* reflectors. See Further Details. */
/* */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* */
/* TAU (output) COMPLEX*16 array, dimension (N-1) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to */
/* zero. */
/* */
/* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* */
/* LWORK (input) INTEGER */
/* The length of the array WORK. LWORK >= max(1,N). */
/* For optimum performance LWORK >= N*NB, where NB is the */
/* optimal blocksize. */
/* */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* */
/* Further Details */
/* =============== */
/* */
/* The matrix Q is represented as a product of (ihi-ilo) elementary */
/* reflectors */
/* */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* */
/* Each H(i) has the form */
/* */
/* H(i) = I - tau * v * v' */
/* */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* exit in A(i+2:ihi,i), and tau in TAU(i). */
/* */
/* The contents of A are illustrated by the following example, with */
/* n = 7, ilo = 2 and ihi = 6: */
/* */
/* on entry, on exit, */
/* */
/* ( a a a a a a a ) ( a a h h h h a ) */
/* ( a a a a a a ) ( a h h h h a ) */
/* ( a a a a a a ) ( h h h h h h ) */
/* ( a a a a a a ) ( v2 h h h h h ) */
/* ( a a a a a a ) ( v2 v3 h h h h ) */
/* ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* ( a ) ( a ) */
/* */
/* where a denotes an element of the original matrix A, h denotes a */
/* modified element of the upper Hessenberg matrix H, and vi denotes an */
/* element of the vector defining H(i). */
/* */
/* ===================================================================== */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -2;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*lwork < max(1,*n)) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZGEHRD", &i__1);
return;
}
/* Set elements 1:ILO-1 and IHI:N-1 of TAU to zero */
for (i = 0; i < *ilo-1; ++i) {
tau[i].r = 0., tau[i].i = 0.;
}
for (i = max(0,*ihi-1); i < *n-1; ++i) {
tau[i].r = 0., tau[i].i = 0.;
}
/* Quick return if possible */
nh = *ihi - *ilo + 1;
if (nh <= 1) {
work[0].r = 1., work[0].i = 0.;
return;
}
/* Determine the block size. */
i__2 = ilaenv_(&c__1, "ZGEHRD", " ", n, ilo, ihi, &c_n1);
nb = min(64,i__2);
nbmin = 2;
iws = 1;
if (nb > 1 && nb < nh) {
/* Determine when to cross over from blocked to unblocked code */
/* (last block is always handled by unblocked code). */
i__2 = ilaenv_(&c__3, "ZGEHRD", " ", n, ilo, ihi, &c_n1);
nx = max(nb,i__2);
if (nx < nh) {
/* Determine if workspace is large enough for blocked code. */
iws = *n * nb;
if (*lwork < iws) {
/* Not enough workspace to use optimal NB: determine the */
/* minimum value of NB, and reduce NB or force use of */
/* unblocked code. */
i__2 = ilaenv_(&c__2, "ZGEHRD", " ", n, ilo, ihi, &c_n1);
nbmin = max(2,i__2);
if (*lwork >= *n * nbmin) {
nb = *lwork / *n;
} else {
nb = 1;
}
}
}
}
ldwork = *n;
if (nb < nbmin || nb >= nh) {
/* Use unblocked code below */
i = *ilo-1;
} else {
/* Use blocked code */
i__1 = *ihi - 2 - nx;
for (i = *ilo-1; nb < 0 ? i >= i__1 : i <= i__1; i += nb) {
i__4 = *ihi-1 - i;
ib = min(nb,i__4);
/* Reduce columns i:i+ib-1 to Hessenberg form, returning the */
/* matrices V and T of the block reflector H = I - V*T*V' */
/* which performs the reduction, and also the matrix Y = A*V*T */
i__1 = i + 1;
zlahrd_(ihi, &i__1, &ib, &a[i * *lda], lda, &tau[i], t, &c__65, work, &ldwork);
/* Apply the block reflector H to A(1:ihi,i+ib:ihi) from the right, */
/* computing A := A - Y * V'. V(i+ib,ib-1) must be set to 1. */
i__3 = i + ib + (i + ib - 1) * *lda;
ei.r = a[i__3].r, ei.i = a[i__3].i;
a[i__3].r = 1., a[i__3].i = 0.;
i__3 = *ihi - i - ib;
zgemm_("No transpose", "Conjugate transpose", ihi, &i__3, &ib, &c_b24, work,
&ldwork, &a[i+ib + i * *lda], lda, &c_b21, &a[(i+ib) * *lda], lda);
i__3 = i + ib + (i + ib - 1) * *lda;
a[i__3].r = ei.r, a[i__3].i = ei.i;
/* Apply the block reflector H to A(i+1:ihi,i+ib:n) from the left */
i__3 = *ihi-1 - i;
i__4 = *n - i - ib;
zlarfb_("Left", "Conjugate transpose", "Forward", "Columnwise",
&i__3, &i__4, &ib, &a[i+1 + i * *lda], lda, t, &c__65,
&a[i+1 + (i + ib) * *lda], lda, work, &ldwork);
}
}
/* Use unblocked code to reduce the rest of the matrix */
i__1 = i + 1;
zgehd2_(n, &i__1, ihi, a, lda, tau, work, &iinfo);
work[0].r = (doublereal) iws, work[0].i = 0.;
return;
} /* zgehrd_ */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -