📄 ztrsv.c
字号:
#include "f2c.h"
#include "netlib.h"
/* Modified by Peter Vanroose, June 2001: manual optimisation and clean-up */
/* Subroutine */ void ztrsv_(uplo, trans, diag, n, a, lda, x, incx)
const char *uplo, *trans, *diag;
const integer *n;
const doublecomplex *a;
const integer *lda;
doublecomplex *x;
const integer *incx;
{
/* System generated locals */
integer i__1;
doublecomplex z__1;
/* Local variables */
static integer info;
static doublecomplex temp;
static integer i, j;
static integer ix, jx, kx;
static logical noconj, nounit;
/************************************************************************/
/* */
/* Purpose */
/* ======= */
/* */
/* ZTRSV solves one of the systems of equations */
/* */
/* A*x = b, or A'*x = b, or conjg( A' )*x = b, */
/* */
/* where b and x are n element vectors and A is an n by n unit, or */
/* non-unit, upper or lower triangular matrix. */
/* */
/* No test for singularity or near-singularity is included in this */
/* routine. Such tests must be performed before calling this routine. */
/* */
/* Parameters */
/* ========== */
/* */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the matrix is an upper or */
/* lower triangular matrix as follows: */
/* */
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* */
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* */
/* Unchanged on exit. */
/* */
/* TRANS - CHARACTER*1. */
/* On entry, TRANS specifies the equations to be solved as */
/* follows: */
/* */
/* TRANS = 'N' or 'n' A*x = b. */
/* */
/* TRANS = 'T' or 't' A'*x = b. */
/* */
/* TRANS = 'C' or 'c' conjg( A' )*x = b. */
/* */
/* Unchanged on exit. */
/* */
/* DIAG - CHARACTER*1. */
/* On entry, DIAG specifies whether or not A is unit */
/* triangular as follows: */
/* */
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* */
/* DIAG = 'N' or 'n' A is not assumed to be unit */
/* triangular. */
/* */
/* Unchanged on exit. */
/* */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* */
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading n by n */
/* upper triangular part of the array A must contain the upper*/
/* triangular matrix and the strictly lower triangular part of*/
/* A is not referenced. */
/* Before entry with UPLO = 'L' or 'l', the leading n by n */
/* lower triangular part of the array A must contain the lower*/
/* triangular matrix and the strictly upper triangular part of*/
/* A is not referenced. */
/* Note that when DIAG = 'U' or 'u', the diagonal elements of*/
/* A are not referenced either, but are assumed to be unity. */
/* Unchanged on exit. */
/* */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as */
/* declared in the calling (sub) program. LDA must be at */
/* least max( 1, n ). */
/* Unchanged on exit. */
/* */
/* X - COMPLEX*16 array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element right-hand side vector b. On exit, X is overwritten*/
/* with the solution vector x. */
/* */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* */
/************************************************************************/
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
info = 1;
} else if (! lsame_(trans, "N") && ! lsame_(trans, "T") && ! lsame_(trans, "C")) {
info = 2;
} else if (! lsame_(diag, "U") && ! lsame_(diag, "N")) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*lda < max(1,*n)) {
info = 6;
} else if (*incx == 0) {
info = 8;
}
if (info != 0) {
xerbla_("ZTRSV ", &info);
return;
}
/* Quick return if possible. */
if (*n == 0) {
return;
}
noconj = lsame_(trans, "T");
nounit = lsame_(diag, "N");
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = (1 - *n) * *incx;
} else if (*incx != 1) {
kx = 0;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
if (lsame_(trans, "N")) {
/* Form x := inv( A )*x. */
if (lsame_(uplo, "U")) {
if (*incx == 1) {
for (j = *n - 1; j >= 0; --j) {
if (x[j].r != 0. || x[j].i != 0.) {
if (nounit) {
z_div(&x[j], &x[j], &a[j + j * *lda]);
}
temp.r = x[j].r, temp.i = x[j].i;
for (i = j - 1; i >= 0; --i) {
i__1 = i + j * *lda;
x[i].r -= temp.r * a[i__1].r - temp.i * a[i__1].i,
x[i].i -= temp.r * a[i__1].i + temp.i * a[i__1].r;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -