📄 vnl_real_npolynomial.cxx
字号:
// This is vxl/vnl/vnl_real_npolynomial.cxx
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma implementation
#endif
//:
// \file
// \brief a degree n real polynomial
// \author Marc Pollefeys, ESAT-VISICS, K.U.Leuven, 12-08-97
//
// Implements a polynomial with N variables
#include <vcl_cassert.h>
#include <vcl_cmath.h> // vcl_fabs()
#include <vcl_iostream.h>
#include "vnl_real_npolynomial.h"
//: Constructor
//<PRE>
// coeffs = vnl_vector<double>(nterms)
// polyn = vnl_matrix<int>(nterms,nvar)
// Example: A*x^3 + B*x*y + C*y^2 + D*x*y^2
// nvar = 2;
// nterms = 4;
// coeffs = [A B C D]';
// polyn = [3 0]
// [1 1]
// [0 2]
// [1 2];
//</PRE>
vnl_real_npolynomial::vnl_real_npolynomial(const vnl_vector<double>& c, const vnl_matrix<int>& p)
: coeffs_(c)
, polyn_(p)
, nvar_(p.cols())
, nterms_(p.rows())
, ideg_(p.max_value())
{
assert(c.size() == p.rows());
simplify();
}
//: Combine terms with idential exponents (i.e., identical rows in polyn_).
// Remove terms with zero coefficient.
void vnl_real_npolynomial::simplify()
{
for (int row1=0; row1<nterms_; ++row1)
for (int row2=row1+1; row2<nterms_; ++row2) {
int col=0;
while (col<nvar_ && polyn_(row1,col) == polyn_(row2,col)) ++col;
if (col < nvar_) continue; // not all exponents are identical
coeffs_(row1) += coeffs_(row2); coeffs_(row2) = 0;
}
for (int row=0; row<nterms_; ++row)
if (coeffs_(row) == 0) {
--nterms_; // decrement nterms, and move last element to vacant place:
coeffs_(row) = coeffs_(nterms_);
coeffs_(nterms_) = 0; // not really necessary; to keep coeffs_ consistent
for (int i=0; i<nvar_; ++i)
polyn_(row,i) = polyn_(nterms_,i);
}
}
double vnl_real_npolynomial::eval(const vnl_matrix<double>& xn)
{
double s=0;
for (int i=0; i<nterms_; i++){
double t=coeffs_(i);
for (int j=0; j<nvar_; j++)
t*=xn(j,polyn_(i,j));
s+=t;
}
return s;
}
double vnl_real_npolynomial::eval(const vnl_vector<double>& x)
{
vnl_matrix<double> xn(nvar_,ideg_+1);
for (int j=0; j<nvar_; j++){
xn(j,0)=1;
for (int i=1; i<ideg_+1; i++)
xn(j,i)=xn(j,i-1)*x(j);
}
return eval(xn);
}
//: Set the coefficients and degree of variable
void vnl_real_npolynomial::set(const vnl_vector<double>& c, const vnl_matrix<int>& p)
{
coeffs_= c;
polyn_ = p;
nvar_ = p.cols();
nterms_ = p.rows();
ideg_ = p.max_value();
}
int vnl_real_npolynomial::degree()
{
int d=0;
for (int i=0; i<nterms_; i++){
int dt=0;
for (int j=0; j<nvar_; j++)
dt+=polyn_(i,j);
if (dt>d) d=dt;
}
return d;
}
vnl_real_npolynomial vnl_real_npolynomial::operator-() const
{
vnl_vector<double> coef(nterms_);
for (int i=0; i<nterms_; ++i) coef(i) = - coeffs_(i);
vnl_matrix<int> poly = polyn_;
return vnl_real_npolynomial(coef, poly);
}
vnl_real_npolynomial vnl_real_npolynomial::operator+(vnl_real_npolynomial const& P) const
{
assert(nvar_ == P.nvar_); // both polynomials must have the same variables
vnl_vector<double> coef(nterms_+P.nterms_);
int i = 0; for (; i<nterms_; ++i) coef(i) = coeffs_(i);
for (int j=0; j<P.nterms_; ++i,++j) coef(i) = P.coeffs_(j);
vnl_matrix<int> poly(nterms_+P.nterms_,nvar_);
for (i=0; i<nterms_; ++i) for (int k=0; k<nvar_; ++k) poly(i,k) = polyn_(i,k);
for (int j=0; j<P.nterms_; ++i,++j) for (int k=0; k<nvar_; ++k) poly(i,k) = P.polyn_(j,k);
return vnl_real_npolynomial(coef, poly);
}
vnl_real_npolynomial vnl_real_npolynomial::operator+(double P) const
{
vnl_vector<double> coef(nterms_+1);
for (int i=0; i<nterms_; ++i) coef(i) = coeffs_(i);
coef(nterms_) = P;
vnl_matrix<int> poly(nterms_+1,nvar_);
for (int i=0; i<nterms_; ++i) for (int k=0; k<nvar_; ++k) poly(i,k) = polyn_(i,k);
for (int k=0; k<nvar_; ++k) poly(nterms_,k) = 0;
return vnl_real_npolynomial(coef, poly);
}
vnl_real_npolynomial vnl_real_npolynomial::operator-(vnl_real_npolynomial const& P) const
{
assert(nvar_ == P.nvar_); // both polynomials must have the same variables
vnl_vector<double> coef(nterms_+P.nterms_);
int i = 0; for (; i<nterms_; ++i) coef(i) = coeffs_(i);
for (int j=0; j<P.nterms_; ++i,++j) coef(i) = - P.coeffs_(j);
vnl_matrix<int> poly(nterms_+P.nterms_,nvar_);
for (i=0; i<nterms_; ++i) for (int k=0; k<nvar_; ++k) poly(i,k) = polyn_(i,k);
for (int j=0; j<P.nterms_; ++i,++j) for (int k=0; k<nvar_; ++k) poly(i,k) = P.polyn_(j,k);
return vnl_real_npolynomial(coef, poly);
}
vnl_real_npolynomial vnl_real_npolynomial::operator*(vnl_real_npolynomial const& P) const
{
assert(nvar_ == P.nvar_); // both polynomials must have the same variables
vnl_vector<double> coef(nterms_*P.nterms_);
int k = 0;
for (int i=0; i<nterms_; ++i)
for (int j=0; j<P.nterms_; ++j,++k)
coef(k) = coeffs_(i) * P.coeffs_(j);
vnl_matrix<int> poly(nterms_*P.nterms_,nvar_);
k = 0;
for (int i=0; i<nterms_; ++i)
for (int j=0; j<P.nterms_; ++j,++k)
for (int l=0; l<nvar_; ++l)
poly(k,l) = polyn_(i,l) + P.polyn_(j,l);
return vnl_real_npolynomial(coef, poly);
}
vnl_real_npolynomial vnl_real_npolynomial::operator*(double P) const
{
vnl_vector<double> coef(nterms_);
for (int i=0; i<nterms_; ++i)
coef(i) = coeffs_(i) * P;
vnl_matrix<int> poly = polyn_;
return vnl_real_npolynomial(coef, poly);
}
vcl_ostream& operator<<(vcl_ostream& os, vnl_real_npolynomial const& P)
{
if (P.nvar_ <= 3) for (int i=0; i<P.nterms_; ++i) {
os << ' ';
if (i>0 && P.coeffs_(i) > 0) os << '+';
if (vcl_fabs(P.coeffs_(i)) != 1) os << P.coeffs_(i) << ' ';
int totaldeg = 0;
if (P.nvar_ > 0 && P.polyn_(i,0) > 0) { os << 'X'; totaldeg += P.polyn_(i,0); }
if (P.nvar_ > 0 && P.polyn_(i,0) > 1) os << '^' << P.polyn_(i,0);
if (P.nvar_ > 1 && P.polyn_(i,1) > 0) { os << 'Y'; totaldeg += P.polyn_(i,1); }
if (P.nvar_ > 1 && P.polyn_(i,1) > 1) os << '^' << P.polyn_(i,1);
if (P.nvar_ > 2 && P.polyn_(i,2) > 0) { os << 'Z'; totaldeg += P.polyn_(i,2); }
if (P.nvar_ > 2 && P.polyn_(i,2) > 1) os << '^' << P.polyn_(i,2);
if (totaldeg == 0 && vcl_fabs(P.coeffs_(i)) == 1) os << P.coeffs_(i);
}
else for (int i=0; i<P.nterms_; ++i) {
os << ' ';
if (i>0 && P.coeffs_(i) > 0) os << '+';
if (vcl_fabs(P.coeffs_(i)) != 1) os << P.coeffs_(i) << ' ';
int totaldeg = 0;
for (int j=0; j<P.nvar_; ++j) {
if (P.polyn_(i,j) > 0) os << 'X' << j;
if (P.polyn_(i,j) > 1) os << '^' << P.polyn_(i,j);
totaldeg += P.polyn_(i,j);
}
if (totaldeg == 0 && vcl_fabs(P.coeffs_(i)) == 1) os << P.coeffs_(i);
}
os << vcl_endl; return os;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -