⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vnl_rpoly_roots.cxx

📁 InsightToolkit-1.4.0(有大量的优化算法程序)
💻 CXX
字号:
// This is vxl/vnl/algo/vnl_rpoly_roots.cxx
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma implementation
#endif
//:
// \file
//
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date   06 Aug 96
//
//-----------------------------------------------------------------------------

#include "vnl_rpoly_roots.h"

#include <vcl_cmath.h> // for fabs()
#include <vcl_iostream.h>
#include <vcl_complex.h>
#include <vnl/algo/vnl_netlib.h> // rpoly_()
#include <vnl/vnl_real_polynomial.h>

// - The constructor calculates the roots.  This is the most efficient interface
// as all the result variables are initialized to the correct size.
// The polynomial is $ a[0] x^d + a[1] x^{d-1} + \cdots + a[d] = 0 $.
// Note that if the routine fails, not all roots will be found.  In this case,
// the "realroots" and "roots" functions will return fewer than n roots.
vnl_rpoly_roots::vnl_rpoly_roots(const vnl_vector<double>& a)
  : coeffs_(a), r_(coeffs_.size()-1), i_(coeffs_.size()-1)
{
  // fsm : if the coefficients are NaNs then rpoly_ gets stuck in an
  // infinite loop. of course, the caller shouldn't pass in NaNs, but
  // it would be nice to get an error message instead of hanging.
  a.assert_finite();

  compute();
}

vnl_rpoly_roots::vnl_rpoly_roots(const vnl_real_polynomial& poly)
  : coeffs_(poly.coefficients()), r_(poly.degree()), i_(poly.degree())
{
  poly.coefficients().assert_finite();

  compute();
}

// - Complex vector of all roots.
vnl_vector<vcl_complex<double> > vnl_rpoly_roots::roots() const
{
  vnl_vector<vcl_complex<double> > ret(num_roots_found_);
  for (int i = 0; i < num_roots_found_; ++i)
    ret[i] = vcl_complex<double>(r_[i], i_[i]);
  return ret;
}

// - Return real roots only.  Roots are real if the absolute value
// of their imaginary part is less than the optional argument TOL.
// TOL defaults to 1e-12 [untested]
vnl_vector<double> vnl_rpoly_roots::realroots(double tol) const
{
  int c = 0;
  for (int i = 0; i < num_roots_found_; ++i)
    if (vcl_fabs(i_[i]) < tol)
      ++c;

  vnl_vector<double> ret(c);
  c = 0;
  {for (int i = 0; i < num_roots_found_; ++i)
    if (vcl_fabs(i_[i]) < tol)
      ret[c++] = r_[i];}

  return ret;
}

//: Compute roots using Jenkins-Traub algorithm.
// Calls rpoly and interprets failure codes.
bool vnl_rpoly_roots::compute()
{
  vcl_cerr << __FILE__ << " " << __LINE__ << "\n" << vcl_endl;
  int fail = 0;
  int n = coeffs_.size() - 1;

  rpoly_(coeffs_.data_block(), &n, r_.data_block(), i_.data_block(), &fail);

  if (!fail) {
    num_roots_found_ = n;
    return true;
  }

  num_roots_found_ = n;

  if (coeffs_[0] == 0.0)
    vcl_cerr << "vnl_rpoly_roots: Leading coefficient is zero.  Not allowed.\n";
  else
    vcl_cerr << "vnl_rpoly_roots: Calculation failed, only " << n << " roots found\n";

  return false;
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -