📄 vnl_generalized_eigensystem.h
字号:
// This is vxl/vnl/algo/vnl_generalized_eigensystem.h
#ifndef vnl_generalized_eigensystem_h_
#define vnl_generalized_eigensystem_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
// \file
// \brief Solves the generalized eigenproblem Ax=La
// \author Andrew W. Fitzgibbon, Oxford RRG
// \date 29 Aug 96
//
// \verbatim
// Modifications
// dac (Manchester) 28/03/2001: tidied up documentation
// Feb.2002 - Peter Vanroose - brief doxygen comment placed on single line
// \endverbatim
#include <vnl/vnl_diag_matrix.h>
//: Solves the generalized eigenproblem Ax=Bx
// Solves the generalized eigenproblem of $A x = \lambda B x$,
// with $A$ symmetric and $B$ positive definite. \n
// See Golub and van Loan, Section 8.7.
class vnl_generalized_eigensystem
{
public:
// Public data members because they're unique.
int n;
//: Solves the generalized eigenproblem Ax=Bx
// Solve real generalized eigensystem $A x = \lambda B x$ for
// $\lambda$ and $x$, where $A$ symmetric, $B$ positive definite.
// Initializes storage for the matrix $V = [ x_0 x_1 .. x_n ]$ and
// the vnl_diag_matrix $D = [ \lambda_0 \lambda_1 ... \lambda_n ]$.
// The eigenvalues are sorted into increasing order (of value, not
// absolute value).
//
// Uses vnl_cholesky decomposition $C^\top C = B$, to convert to
// $C^{-\top} A C^{-1} x = \lambda x$ and then uses the
// symmetric eigensystem code. It will print a verbose warning
// if $B$ is not positive definite.
vnl_generalized_eigensystem(const vnl_matrix<double>& A,
const vnl_matrix<double>& B);
//: Public eigenvectors.
// After construction, this contains the matrix of eigenvectors.
vnl_matrix<double> V;
//: Public eigenvalues.
// After construction, this contains the diagonal matrix of eigenvalues, stored as a vector.
vnl_diag_matrix<double> D;
};
#endif // vnl_generalized_eigensystem_h_
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -