📄 vnl_sparse_symmetric_eigensystem.h
字号:
// This is core/vnl/algo/vnl_sparse_symmetric_eigensystem.h
#ifndef vnl_sparse_symmetric_eigensystem_h_
#define vnl_sparse_symmetric_eigensystem_h_
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma interface
#endif
//:
// \file
// \brief Find the eigenvalues of a sparse symmetric matrix
// \author Rupert W. Curwen, GE CR&D
// \date 20 Oct 98
//
// \verbatim
// Modifications
// dac (Manchester) 28/03/2001: tidied up documentation
// \endverbatim
#include <vnl/vnl_sparse_matrix.h>
#include <vcl_vector.h>
//: Find the eigenvalues of a sparse symmetric matrix
// Solve the eigenproblem $A x = \lambda x$, with $A$ symmetric and
// sparse. The block Lanczos algorithm is used to allow the
// recovery of a number of eigenvale/eigenvector pairs from either
// end of the spectrum, to a required accuracy.
//
// Uses the dnlaso routine from the LASO package of netlib.
class vnl_sparse_symmetric_eigensystem
{
public:
vnl_sparse_symmetric_eigensystem();
~vnl_sparse_symmetric_eigensystem();
// Find n eigenvalue/eigenvectors. If smallest is true, will
// calculate the n smallest eigenpairs, else the n largest.
int CalculateNPairs(vnl_sparse_matrix<double>& M, int n,
bool smallest = true, int nfigures = 10);
// Recover specified eigenvector after computation. The argument
// must be less than the requested number of eigenvectors.
vnl_vector<double> get_eigenvector(int i) const;
double get_eigenvalue(int i) const;
// Used as a callback in solving.
int CalculateProduct(int n, int m, const double* p, double* q);
int SaveVectors(int n, int m, const double* q, int base);
int RestoreVectors(int n, int m, double* q, int base);
protected:
int nvalues; // this is the size of the next two arrays.
vnl_vector<double> * vectors; // eigenvectors
double * values; // eigenvalues
vnl_sparse_matrix<double> * mat;
vcl_vector<double*> temp_store;
};
#endif // vnl_sparse_symmetric_eigensystem_h_
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -