📄 vnl_symmetric_eigensystem.cxx
字号:
// This is core/vnl/algo/vnl_symmetric_eigensystem.cxx
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma implementation
#endif
//:
// \file
// \author Andrew W. Fitzgibbon, Oxford RRG
// Created: 29 Aug 96
//
//-----------------------------------------------------------------------------
#include "vnl_symmetric_eigensystem.h"
#include <vcl_cassert.h>
#include <vcl_cmath.h> // for sqrt(double)
#include <vcl_iostream.h>
#include <vnl/vnl_copy.h>
#include "vnl_netlib.h" // rs_()
bool vnl_symmetric_eigensystem_compute(vnl_matrix<float> const & A,
vnl_matrix<float> & V,
vnl_vector<float> & D)
{
vnl_matrix<double> Ad(A.rows(), A.cols());
vnl_matrix<double> Vd(V.rows(), V.cols());
vnl_vector<double> Dd(D.size());
vnl_copy(A, Ad);
bool f = vnl_symmetric_eigensystem_compute(Ad, Vd, Dd);
vnl_copy(Vd, V);
vnl_copy(Dd, D);
return f;
}
bool vnl_symmetric_eigensystem_compute(vnl_matrix<double> const & A,
vnl_matrix<double> & V,
vnl_vector<double> & D)
{
A.assert_finite();
// The fortran code does not like it if V or D are
// undersized. I expect they probably should not be
// oversized either. - IMS
assert(V.rows() == A.rows());
assert(V.cols() == A.rows());
assert(D.size() == A.rows());
int n = A.rows();
vnl_vector<double> work1(n);
vnl_vector<double> work2(n);
vnl_vector<double> Vvec(n*n);
int want_eigenvectors = 1;
int ierr = 0;
// No need to transpose A, cos it's symmetric...
vnl_matrix<double> B = A; // since A is read-only and rs_ might change its third argument...
rs_(&n, &n, B.data_block(), &D[0], &want_eigenvectors, &Vvec[0], &work1[0], &work2[0], &ierr);
if (ierr) {
vcl_cerr << "vnl_symmetric_eigensystem: ierr = " << ierr << vcl_endl;
return false;
}
// Transpose-copy into V
double *vptr = &Vvec[0];
for (int c = 0; c < n; ++c)
for (int r = 0; r < n; ++r)
V(r,c) = *vptr++;
return true;
}
//----------------------------------------------------------------------
// - @{ Solve real symmetric eigensystem $A x = \lambda x$ @}
template <class T>
vnl_symmetric_eigensystem<T>::vnl_symmetric_eigensystem(vnl_matrix<T> const& A)
: n_(A.rows()), V(n_, n_), D(n_)
{
vnl_vector<T> Dvec(n_);
vnl_symmetric_eigensystem_compute(A, V, Dvec);
// Copy Dvec into diagonal of D
for (int i = 0; i < n_; ++i)
D(i,i) = Dvec[i];
}
template <class T>
vnl_vector<T> vnl_symmetric_eigensystem<T>::get_eigenvector(int i) const
{
return vnl_vector<T>(V.extract(n_,1,0,i).data_block(), n_);
}
template <class T>
T vnl_symmetric_eigensystem<T>::get_eigenvalue(int i) const
{
return D(i, i);
}
template <class T>
vnl_vector<T> vnl_symmetric_eigensystem<T>::solve(vnl_vector<T> const& b)
{
//vnl_vector<T> ret(b.length());
//FastOps::AtB(V, b, &ret);
vnl_vector<T> ret(b*V); // same as V.tranpose()*b
vnl_vector<T> tmp(b.size());
D.solve(ret, &tmp);
return V * tmp;
}
template <class T>
T vnl_symmetric_eigensystem<T>::determinant() const
{
int const n = D.size();
T det(1);
for (int i=0; i<n; ++i)
det *= D[i];
return det;
}
template <class T>
vnl_matrix<T> vnl_symmetric_eigensystem<T>::pinverse() const
{
unsigned n = D.rows();
vnl_diag_matrix<T> invD(n);
for (unsigned i=0; i<n; ++i)
if (D(i, i) == 0) {
vcl_cerr << __FILE__ ": pinverse(): eigenvalue " << i << " is zero.\n";
invD(i, i) = 0;
}
else
invD(i, i) = 1 / D(i, i);
return V * invD * V.transpose();
}
template <class T>
vnl_matrix<T> vnl_symmetric_eigensystem<T>::square_root() const
{
unsigned n = D.rows();
vnl_diag_matrix<T> sqrtD(n);
for (unsigned i=0; i<n; ++i)
if (D(i, i) < 0) {
vcl_cerr << __FILE__ ": square_root(): eigenvalue " << i << " is negative (" << D(i, i) << ").\n";
sqrtD(i, i) = (T)vcl_sqrt((typename vnl_numeric_traits<T>::real_t)(-D(i, i)));
// gives square root of the absolute value of T.
}
else
sqrtD(i, i) = (T)vcl_sqrt((typename vnl_numeric_traits<T>::real_t)(D(i, i)));
return V * sqrtD * V.transpose();
}
template <class T>
vnl_matrix<T> vnl_symmetric_eigensystem<T>::inverse_square_root() const
{
unsigned n = D.rows();
vnl_diag_matrix<T> inv_sqrtD(n);
for (unsigned i=0; i<n; ++i)
if (D(i, i) <= 0) {
vcl_cerr << __FILE__ ": square_root(): eigenvalue " << i << " is non-positive (" << D(i, i) << ").\n";
inv_sqrtD(i, i) = (T)vcl_sqrt(-1.0/(typename vnl_numeric_traits<T>::real_t)(D(i, i))); // ??
}
else
inv_sqrtD(i, i) = (T)vcl_sqrt(1.0/(typename vnl_numeric_traits<T>::real_t)(D(i, i)));
return V * inv_sqrtD * V.transpose();
}
//--------------------------------------------------------------------------------
template class vnl_symmetric_eigensystem<float>;
template class vnl_symmetric_eigensystem<double>;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -