⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vnl_real_polynomial.cxx

📁 InsightToolkit-1.4.0(有大量的优化算法程序)
💻 CXX
字号:
// This is vxl/vnl/vnl_real_polynomial.cxx
#ifdef VCL_NEEDS_PRAGMA_INTERFACE
#pragma implementation
#endif
//:
// \file
// \brief Evaluation of real polynomials - the implemenation
// \author Andrew W. Fitzgibbon, Oxford RRG 23 Aug 96
//
// Modifications
// IMS (Manchester) 14/03/2001: Added Manchester IO scheme

#include "vnl_real_polynomial.h"
#include <vcl_iostream.h>
#include <vcl_complex.h>
#include <vcl_cmath.h>

// This is replacing a member template...
template <class T>
T vnl_real_polynomial_evaluate(double const *a, int n, T const& x)
{
  --n;
  T acc = a[n];
  T xn = x;
  do {
    acc += a[--n] * xn;
    xn *= x;
  } while (n);

  return acc;
}

#ifdef VCL_WIN32
#define SELECT(T) <T >
#else
#define SELECT(T)
#endif

//: Instantiate templates before use
template double vnl_real_polynomial_evaluate SELECT(double )
      (double const*,int,double const&);
template vcl_complex<double> vnl_real_polynomial_evaluate SELECT(vcl_complex<double>)
      (double const*,int,vcl_complex<double> const&);

//: Evaluate polynomial at value x
double vnl_real_polynomial::evaluate(double x) const
{
  return vnl_real_polynomial_evaluate SELECT(double)(coeffs_.data_block(), coeffs_.size(), x);
}


//: Evaluate polynomial at complex value x
vcl_complex<double> vnl_real_polynomial::evaluate(vcl_complex<double> const& x) const
{
  return vnl_real_polynomial_evaluate SELECT(vcl_complex<double>)
     (coeffs_.data_block(), coeffs_.size(), x);
}

//: Evaluate derivative at value x.
double vnl_real_polynomial::devaluate(double x) const
{
  return derivative().evaluate(x);
}


//: Evaluate derivative at complex value x. Not implemented.
vcl_complex<double> vnl_real_polynomial::devaluate(vcl_complex<double> const& x) const
{
  return derivative().evaluate(x);
}

//: Evaluate integral at x (assuming constant of integration is zero)
double vnl_real_polynomial::evaluate_integral(double x) const
{
  int d = coeffs_.size()-1;
  const double* f = coeffs_.data_block();
  double sum = 0.0;
  int di=1;
  double xi=x;
  for (int i=d;i>=0;--i)
  {
    sum += f[i]*xi/di;
    xi*=x;
    di++;
  }

  return sum;
}

//: Evaluate integral between x1 and x2
double vnl_real_polynomial::evaluate_integral(double x1, double x2) const
{
  return evaluate_integral(x2)-evaluate_integral(x1);
}

//: Returns sum of two polynomials f1(x)+f2(x)
vnl_real_polynomial operator+(const vnl_real_polynomial& f1, const vnl_real_polynomial& f2)
{
  // Degree of result is highest of the two inputs
  int d1=f1.degree();
  int d2=f2.degree();
  int d = d1;
  if (d2>d) d=d2;

  vnl_real_polynomial sum(d);

  // Coefficients are stored such that f(i) is coef. on x^(d-i)
  for (int i=0;i<=d;++i)
  {
    sum[d-i]=0.0;
    if (i<=d1) sum[d-i]+=f1[d1-i];
    if (i<=d2) sum[d-i]+=f2[d2-i];
  }

  return sum;
}

//: Returns sum of two polynomials f1(x)-f2(x)
vnl_real_polynomial operator-(const vnl_real_polynomial& f1, const vnl_real_polynomial& f2)
{
  // Degree of result is highest of the two inputs
  int d1=f1.degree();
  int d2=f2.degree();
  int d = d1;
  if (d2>d) d=d2;

  vnl_real_polynomial sum(d);

  // Coefficients are stored such that f(i) is coef. on x^(d-i)
  for (int i=0;i<=d;++i)
  {
    sum[d-i]=0.0;
    if (i<=d1) sum[d-i]+=f1[d1-i];
    if (i<=d2) sum[d-i]-=f2[d2-i];
  }

  return sum;
}

//: Returns polynomial which is product of two polynomials f1(x)*f2(x)
vnl_real_polynomial operator*(const vnl_real_polynomial& f1, const vnl_real_polynomial& f2)
{
  int d1=f1.degree();
  int d2=f2.degree();
  int d = d1+d2;

  vnl_real_polynomial sum(d);
  sum.coefficients().fill(0.0);

  for (int i=0;i<=d1;++i)
    for (int j=0;j<=d2;++j)
      sum[d-(i+j)] += (f1[d1-i]*f2[d2-j]);

  return sum;
}

//: Returns RMS difference between f1 and f2 over range [x1,x2]
// $\frac1{\sqrt{|x_2-x_1|}}\,\sqrt{\int_{x_1}^{x_2}\left(f_1(x)-f_2(x)\right)^2\,dx}$
double vnl_rms_difference(const vnl_real_polynomial& f1, const vnl_real_polynomial& f2,
                          double x1, double x2)
{
  double dx = vcl_fabs(x2-x1);
  if (dx==0.0) return 0;

  vnl_real_polynomial df = f2-f1;
  vnl_real_polynomial df2 = df*df;
  double area = vcl_fabs(df2.evaluate_integral(x1,x2));
  return vcl_sqrt(area/dx);
}

//: Return derivative of this polynomial
vnl_real_polynomial vnl_real_polynomial::derivative() const
{
  vnl_vector<double> c = coefficients();
  int d = degree();
  vnl_vector<double> cd (d);
  for (int i=0; i<d; ++i)
    cd[i] = c[i] * (d-i);
  return vnl_real_polynomial(cd);
}

//: Return primitive function (inverse derivative) of this polynomial
// Since a primitive function is not unique, the one with constant = 0 is returned
vnl_real_polynomial vnl_real_polynomial::primitive() const
{
  vnl_vector<double> c = coefficients();
  int d = degree();
  vnl_vector<double> cd (d+2);
  for (int i=0; i<=d; ++i)
    cd[i] = c[i] / (d-i+1);
  cd[d+1] = 0.0;
  return vnl_real_polynomial(cd);
}

void vnl_real_polynomial::print(vcl_ostream& os) const
{
  int d = degree();
  int i = 0;
  while (i <= d && coeffs_[i] == 0) ++i;
  if (i > d) { os << "0 "; return; }
  bool b = (coeffs_[i+1] > 0); // to avoid '+' in front of equation

  for (; i <= d; ++i) {
    if (coeffs_[i] == 0) continue;
    if (coeffs_[i] > 0 && !b) os << '+';
    b = false;
    if (coeffs_[i] == -1)     os << '-';
    else if (coeffs_[i] != 1) os << coeffs_[i];

    if (i < d-1)              os << " X^" << d-i << ' ';
    else if (i == d-1)        os << " X ";
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -