📄 arm1026ejs.md
字号:
;; ARM 1026EJ-S Pipeline Description;; Copyright (C) 2003 Free Software Foundation, Inc.;; Written by CodeSourcery, LLC.;;;; This file is part of GCC.;;;; GCC is free software; you can redistribute it and/or modify it;; under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 2, or (at your option);; any later version.;;;; GCC is distributed in the hope that it will be useful, but;; WITHOUT ANY WARRANTY; without even the implied warranty of;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU;; General Public License for more details.;;;; You should have received a copy of the GNU General Public License;; along with GCC; see the file COPYING. If not, write to the Free;; Software Foundation, 59 Temple Place - Suite 330, Boston, MA;; 02111-1307, USA. */;; These descriptions are based on the information contained in the;; ARM1026EJ-S Technical Reference Manual, Copyright (c) 2003 ARM;; Limited.;;;; This automaton provides a pipeline description for the ARM;; 1026EJ-S core.;;;; The model given here assumes that the condition for all conditional;; instructions is "true", i.e., that all of the instructions are;; actually executed.(define_automaton "arm1026ejs");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Pipelines;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; There are two pipelines:;; ;; - An Arithmetic Logic Unit (ALU) pipeline.;;;; The ALU pipeline has fetch, issue, decode, execute, memory, and;; write stages. We only need to model the execute, memory and write;; stages.;;;; - A Load-Store Unit (LSU) pipeline.;;;; The LSU pipeline has decode, execute, memory, and write stages.;; We only model the execute, memory and write stages.(define_cpu_unit "a_e,a_m,a_w" "arm1026ejs")(define_cpu_unit "l_e,l_m,l_w" "arm1026ejs");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ALU Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ALU instructions require three cycles to execute, and use the ALU;; pipeline in each of the three stages. The results are available;; after the execute stage stage has finished.;;;; If the destination register is the PC, the pipelines are stalled;; for several cycles. That case is not modeled here.;; ALU operations with no shifted operand(define_insn_reservation "alu_op" 1 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "alu")) "a_e,a_m,a_w");; ALU operations with a shift-by-constant operand(define_insn_reservation "alu_shift_op" 1 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "alu_shift")) "a_e,a_m,a_w");; ALU operations with a shift-by-register operand;; These really stall in the decoder, in order to read;; the shift value in a second cycle. Pretend we take two cycles in;; the execute stage.(define_insn_reservation "alu_shift_reg_op" 2 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "alu_shift_reg")) "a_e*2,a_m,a_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Multiplication Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Multiplication instructions loop in the execute stage until the;; instruction has been passed through the multiplier array enough;; times.;; The result of the "smul" and "smulw" instructions is not available;; until after the memory stage.(define_insn_reservation "mult1" 2 (and (eq_attr "tune" "arm1026ejs") (eq_attr "insn" "smulxy,smulwy")) "a_e,a_m,a_w");; The "smlaxy" and "smlawx" instructions require two iterations through;; the execute stage; the result is available immediately following;; the execute stage.(define_insn_reservation "mult2" 2 (and (eq_attr "tune" "arm1026ejs") (eq_attr "insn" "smlaxy,smlalxy,smlawx")) "a_e*2,a_m,a_w");; The "smlalxy", "mul", and "mla" instructions require two iterations;; through the execute stage; the result is not available until after;; the memory stage.(define_insn_reservation "mult3" 3 (and (eq_attr "tune" "arm1026ejs") (eq_attr "insn" "smlalxy,mul,mla")) "a_e*2,a_m,a_w");; The "muls" and "mlas" instructions loop in the execute stage for;; four iterations in order to set the flags. The value result is;; available after three iterations.(define_insn_reservation "mult4" 3 (and (eq_attr "tune" "arm1026ejs") (eq_attr "insn" "muls,mlas")) "a_e*4,a_m,a_w");; Long multiply instructions that produce two registers of;; output (such as umull) make their results available in two cycles;;; the least significant word is available before the most significant;; word. That fact is not modeled; instead, the instructions are;; described.as if the entire result was available at the end of the;; cycle in which both words are available.;; The "umull", "umlal", "smull", and "smlal" instructions all take;; three iterations through the execute cycle, and make their results;; available after the memory cycle.(define_insn_reservation "mult5" 4 (and (eq_attr "tune" "arm1026ejs") (eq_attr "insn" "umull,umlal,smull,smlal")) "a_e*3,a_m,a_w");; The "umulls", "umlals", "smulls", and "smlals" instructions loop in;; the execute stage for five iterations in order to set the flags.;; The value result is available after four iterations.(define_insn_reservation "mult6" 4 (and (eq_attr "tune" "arm1026ejs") (eq_attr "insn" "umulls,umlals,smulls,smlals")) "a_e*5,a_m,a_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Load/Store Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; The models for load/store instructions do not accurately describe;; the difference between operations with a base register writeback;; (such as "ldm!"). These models assume that all memory references;; hit in dcache.;; LSU instructions require six cycles to execute. They use the ALU;; pipeline in all but the 5th cycle, and the LSU pipeline in cycles;; three through six.;; Loads and stores which use a scaled register offset or scaled;; register pre-indexed addressing mode take three cycles EXCEPT for;; those that are base + offset with LSL of 0 or 2, or base - offset;; with LSL of zero. The remainder take 1 cycle to execute.;; For 4byte loads there is a bypass from the load stage(define_insn_reservation "load1_op" 2 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "load_byte,load1")) "a_e+l_e,l_m,a_w+l_w")(define_insn_reservation "store1_op" 0 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "store1")) "a_e+l_e,l_m,a_w+l_w");; A load's result can be stored by an immediately following store(define_bypass 1 "load1_op" "store1_op" "arm_no_early_store_addr_dep");; On a LDM/STM operation, the LSU pipeline iterates until all of the;; registers have been processed.;;;; The time it takes to load the data depends on whether or not the;; base address is 64-bit aligned; if it is not, an additional cycle;; is required. This model assumes that the address is always 64-bit;; aligned. Because the processor can load two registers per cycle,;; that assumption means that we use the same instruction reservations;; for loading 2k and 2k - 1 registers.;;;; The ALU pipeline is stalled until the completion of the last memory;; stage in the LSU pipeline. That is modeled by keeping the ALU;; execute stage busy until that point.;;;; As with ALU operations, if one of the destination registers is the;; PC, there are additional stalls; that is not modeled.(define_insn_reservation "load2_op" 2 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "load2")) "a_e+l_e,l_m,a_w+l_w")(define_insn_reservation "store2_op" 0 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "store2")) "a_e+l_e,l_m,a_w+l_w")(define_insn_reservation "load34_op" 3 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "load3,load4")) "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w")(define_insn_reservation "store34_op" 0 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "store3,store4")) "a_e+l_e,a_e+l_e+l_m,a_e+l_m,a_w+l_w");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Branch and Call Instructions;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; Branch instructions are difficult to model accurately. The ARM;; core can predict most branches. If the branch is predicted;; correctly, and predicted early enough, the branch can be completely;; eliminated from the instruction stream. Some branches can;; therefore appear to require zero cycles to execute. We assume that;; all branches are predicted correctly, and that the latency is;; therefore the minimum value.(define_insn_reservation "branch_op" 0 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "branch")) "nothing");; The latency for a call is not predictable. Therefore, we use 32 as;; roughly equivalent to positive infinity.(define_insn_reservation "call_op" 32 (and (eq_attr "tune" "arm1026ejs") (eq_attr "type" "call")) "nothing")
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -