📄 xtensa.md
字号:
;; GCC machine description for Tensilica's Xtensa architecture.;; Copyright (C) 2001, 2002, 2003, 2004 Free Software Foundation, Inc.;; Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.;; This file is part of GCC.;; GCC is free software; you can redistribute it and/or modify it;; under the terms of the GNU General Public License as published by;; the Free Software Foundation; either version 2, or (at your option);; any later version.;; GCC is distributed in the hope that it will be useful, but WITHOUT;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public;; License for more details.;; You should have received a copy of the GNU General Public License;; along with GCC; see the file COPYING. If not, write to the Free;; Software Foundation, 59 Temple Place - Suite 330, Boston, MA;; 02111-1307, USA.(define_constants [ (A0_REG 0) (A1_REG 1) (A7_REG 7) (A8_REG 8) (UNSPEC_NSAU 1) (UNSPEC_NOP 2) (UNSPEC_PLT 3) (UNSPEC_RET_ADDR 4) (UNSPECV_SET_FP 1) (UNSPECV_ENTRY 2)]);; Attributes.(define_attr "type" "unknown,jump,call,load,store,move,arith,multi,nop,farith,fmadd,fdiv,fsqrt,fconv,fload,fstore,mul16,mul32,div32,mac16,rsr,wsr" (const_string "unknown"))(define_attr "mode" "unknown,none,QI,HI,SI,DI,SF,DF,BL" (const_string "unknown"))(define_attr "length" "" (const_int 1));; Describe a user's asm statement.(define_asm_attributes [(set_attr "type" "multi")]);; Pipeline model.;; The Xtensa basically has simple 5-stage RISC pipeline.;; Most instructions complete in 1 cycle, and it is OK to assume that;; everything is fully pipelined. The exceptions have special insn;; reservations in the pipeline description below. The Xtensa can;; issue one instruction per cycle, so defining CPU units is unnecessary.(define_insn_reservation "xtensa_any_insn" 1 (eq_attr "type" "!load,fload,rsr,mul16,mul32,fmadd,fconv") "nothing")(define_insn_reservation "xtensa_memory" 2 (eq_attr "type" "load,fload") "nothing")(define_insn_reservation "xtensa_sreg" 2 (eq_attr "type" "rsr") "nothing")(define_insn_reservation "xtensa_mul16" 2 (eq_attr "type" "mul16") "nothing")(define_insn_reservation "xtensa_mul32" 2 (eq_attr "type" "mul32") "nothing")(define_insn_reservation "xtensa_fmadd" 4 (eq_attr "type" "fmadd") "nothing")(define_insn_reservation "xtensa_fconv" 2 (eq_attr "type" "fconv") "nothing");; Addition.(define_expand "adddi3" [(set (match_operand:DI 0 "register_operand" "") (plus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" "")))] ""{ rtx srclo; rtx dstlo = gen_lowpart (SImode, operands[0]); rtx src1lo = gen_lowpart (SImode, operands[1]); rtx src2lo = gen_lowpart (SImode, operands[2]); rtx dsthi = gen_highpart (SImode, operands[0]); rtx src1hi = gen_highpart (SImode, operands[1]); rtx src2hi = gen_highpart (SImode, operands[2]); /* Either source can be used for overflow checking, as long as it's not clobbered by the first addition. */ if (!rtx_equal_p (dstlo, src1lo)) srclo = src1lo; else if (!rtx_equal_p (dstlo, src2lo)) srclo = src2lo; else { srclo = gen_reg_rtx (SImode); emit_move_insn (srclo, src1lo); } emit_insn (gen_addsi3 (dstlo, src1lo, src2lo)); emit_insn (gen_addsi3 (dsthi, src1hi, src2hi)); emit_insn (gen_adddi_carry (dsthi, dstlo, srclo)); DONE;});; Represent the add-carry operation as an atomic operation instead of;; expanding it to a conditional branch. Otherwise, the edge;; profiling code breaks because inserting the count increment code;; causes a new jump insn to be added.(define_insn "adddi_carry" [(set (match_operand:SI 0 "register_operand" "+a") (plus:SI (ltu:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")) (match_dup 0)))] "" "bgeu\t%1, %2, 0f\;addi\t%0, %0, 1\;0:" [(set_attr "type" "multi") (set_attr "mode" "SI") (set_attr "length" "6")])(define_insn "addsi3" [(set (match_operand:SI 0 "register_operand" "=D,D,a,a,a") (plus:SI (match_operand:SI 1 "register_operand" "%d,d,r,r,r") (match_operand:SI 2 "add_operand" "d,O,r,J,N")))] "" "@ add.n\t%0, %1, %2 addi.n\t%0, %1, %d2 add\t%0, %1, %2 addi\t%0, %1, %d2 addmi\t%0, %1, %x2" [(set_attr "type" "arith,arith,arith,arith,arith") (set_attr "mode" "SI") (set_attr "length" "2,2,3,3,3")])(define_insn "*addx2" [(set (match_operand:SI 0 "register_operand" "=a") (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (const_int 2)) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "addx2\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "*addx4" [(set (match_operand:SI 0 "register_operand" "=a") (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (const_int 4)) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "addx4\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "*addx8" [(set (match_operand:SI 0 "register_operand" "=a") (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (const_int 8)) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "addx8\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "addsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (match_operand:SF 1 "register_operand" "%f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "add.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]);; Subtraction.(define_expand "subdi3" [(set (match_operand:DI 0 "register_operand" "") (minus:DI (match_operand:DI 1 "register_operand" "") (match_operand:DI 2 "register_operand" "")))] ""{ rtx dstlo = gen_lowpart (SImode, operands[0]); rtx src1lo = gen_lowpart (SImode, operands[1]); rtx src2lo = gen_lowpart (SImode, operands[2]); rtx dsthi = gen_highpart (SImode, operands[0]); rtx src1hi = gen_highpart (SImode, operands[1]); rtx src2hi = gen_highpart (SImode, operands[2]); emit_insn (gen_subsi3 (dsthi, src1hi, src2hi)); emit_insn (gen_subdi_carry (dsthi, src1lo, src2lo)); emit_insn (gen_subsi3 (dstlo, src1lo, src2lo)); DONE;})(define_insn "subdi_carry" [(set (match_operand:SI 0 "register_operand" "+a") (minus:SI (match_dup 0) (ltu:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r"))))] "" "bgeu\t%1, %2, 0f\;addi\t%0, %0, -1\;0:" [(set_attr "type" "multi") (set_attr "mode" "SI") (set_attr "length" "6")])(define_insn "subsi3" [(set (match_operand:SI 0 "register_operand" "=a") (minus:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "" "sub\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "*subx2" [(set (match_operand:SI 0 "register_operand" "=a") (minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (const_int 2)) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "subx2\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "*subx4" [(set (match_operand:SI 0 "register_operand" "=a") (minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (const_int 4)) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "subx4\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "*subx8" [(set (match_operand:SI 0 "register_operand" "=a") (minus:SI (mult:SI (match_operand:SI 1 "register_operand" "r") (const_int 8)) (match_operand:SI 2 "register_operand" "r")))] "TARGET_ADDX" "subx8\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "subsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "sub.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]);; Multiplication.(define_insn "mulsi3" [(set (match_operand:SI 0 "register_operand" "=a") (mult:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MUL32" "mull\t%0, %1, %2" [(set_attr "type" "mul32") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "mulhisi3" [(set (match_operand:SI 0 "register_operand" "=C,A") (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r,r")) (sign_extend:SI (match_operand:HI 2 "register_operand" "r,r"))))] "TARGET_MUL16 || TARGET_MAC16" "@ mul16s\t%0, %1, %2 mul.aa.ll\t%1, %2" [(set_attr "type" "mul16,mac16") (set_attr "mode" "SI") (set_attr "length" "3,3")])(define_insn "umulhisi3" [(set (match_operand:SI 0 "register_operand" "=C,A") (mult:SI (zero_extend:SI (match_operand:HI 1 "register_operand" "%r,r")) (zero_extend:SI (match_operand:HI 2 "register_operand" "r,r"))))] "TARGET_MUL16 || TARGET_MAC16" "@ mul16u\t%0, %1, %2 umul.aa.ll\t%1, %2" [(set_attr "type" "mul16,mac16") (set_attr "mode" "SI") (set_attr "length" "3,3")])(define_insn "muladdhisi" [(set (match_operand:SI 0 "register_operand" "=A") (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) (match_operand:SI 3 "register_operand" "0")))] "TARGET_MAC16" "mula.aa.ll\t%1, %2" [(set_attr "type" "mac16") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "mulsubhisi" [(set (match_operand:SI 0 "register_operand" "=A") (minus:SI (match_operand:SI 1 "register_operand" "0") (mult:SI (sign_extend:SI (match_operand:HI 2 "register_operand" "%r")) (sign_extend:SI (match_operand:HI 3 "register_operand" "r")))))] "TARGET_MAC16" "muls.aa.ll\t%2, %3" [(set_attr "type" "mac16") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "mulsf3" [(set (match_operand:SF 0 "register_operand" "=f") (mult:SF (match_operand:SF 1 "register_operand" "%f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT" "mul.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")])(define_insn "muladdsf3" [(set (match_operand:SF 0 "register_operand" "=f") (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "%f") (match_operand:SF 2 "register_operand" "f")) (match_operand:SF 3 "register_operand" "0")))] "TARGET_HARD_FLOAT && !TARGET_NO_FUSED_MADD" "madd.s\t%0, %1, %2" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")])(define_insn "mulsubsf3" [(set (match_operand:SF 0 "register_operand" "=f") (minus:SF (match_operand:SF 1 "register_operand" "0") (mult:SF (match_operand:SF 2 "register_operand" "%f") (match_operand:SF 3 "register_operand" "f"))))] "TARGET_HARD_FLOAT && !TARGET_NO_FUSED_MADD" "msub.s\t%0, %2, %3" [(set_attr "type" "fmadd") (set_attr "mode" "SF") (set_attr "length" "3")]);; Division.(define_insn "divsi3" [(set (match_operand:SI 0 "register_operand" "=a") (div:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "quos\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "udivsi3" [(set (match_operand:SI 0 "register_operand" "=a") (udiv:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "quou\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "divsf3" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "register_operand" "f") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT_DIV" "div.s\t%0, %1, %2" [(set_attr "type" "fdiv") (set_attr "mode" "SF") (set_attr "length" "3")])(define_insn "*recipsf2" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "const_float_1_operand" "") (match_operand:SF 2 "register_operand" "f")))] "TARGET_HARD_FLOAT_RECIP && flag_unsafe_math_optimizations" "recip.s\t%0, %2" [(set_attr "type" "fdiv") (set_attr "mode" "SF") (set_attr "length" "3")]);; Remainders.(define_insn "modsi3" [(set (match_operand:SI 0 "register_operand" "=a") (mod:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "rems\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "umodsi3" [(set (match_operand:SI 0 "register_operand" "=a") (umod:SI (match_operand:SI 1 "register_operand" "r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_DIV32" "remu\t%0, %1, %2" [(set_attr "type" "div32") (set_attr "mode" "SI") (set_attr "length" "3")]);; Square roots.(define_insn "sqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (sqrt:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT_SQRT" "sqrt.s\t%0, %1" [(set_attr "type" "fsqrt") (set_attr "mode" "SF") (set_attr "length" "3")])(define_insn "*rsqrtsf2" [(set (match_operand:SF 0 "register_operand" "=f") (div:SF (match_operand:SF 1 "const_float_1_operand" "") (sqrt:SF (match_operand:SF 2 "register_operand" "f"))))] "TARGET_HARD_FLOAT_RSQRT && flag_unsafe_math_optimizations" "rsqrt.s\t%0, %2" [(set_attr "type" "fsqrt") (set_attr "mode" "SF") (set_attr "length" "3")]);; Absolute value.(define_insn "abssi2" [(set (match_operand:SI 0 "register_operand" "=a") (abs:SI (match_operand:SI 1 "register_operand" "r")))] "TARGET_ABS" "abs\t%0, %1" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "abssf2" [(set (match_operand:SF 0 "register_operand" "=f") (abs:SF (match_operand:SF 1 "register_operand" "f")))] "TARGET_HARD_FLOAT" "abs.s\t%0, %1" [(set_attr "type" "farith") (set_attr "mode" "SF") (set_attr "length" "3")]);; Min and max.(define_insn "sminsi3" [(set (match_operand:SI 0 "register_operand" "=a") (smin:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MINMAX" "min\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "uminsi3" [(set (match_operand:SI 0 "register_operand" "=a") (umin:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MINMAX" "minu\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "smaxsi3" [(set (match_operand:SI 0 "register_operand" "=a") (smax:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MINMAX" "max\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")])(define_insn "umaxsi3" [(set (match_operand:SI 0 "register_operand" "=a") (umax:SI (match_operand:SI 1 "register_operand" "%r") (match_operand:SI 2 "register_operand" "r")))] "TARGET_MINMAX" "maxu\t%0, %1, %2" [(set_attr "type" "arith") (set_attr "mode" "SI") (set_attr "length" "3")]);; Find first bit.(define_expand "ffssi2" [(set (match_operand:SI 0 "register_operand" "") (ffs:SI (match_operand:SI 1 "register_operand" "")))] "TARGET_NSA"{ rtx temp = gen_reg_rtx (SImode); emit_insn (gen_negsi2 (temp, operands[1])); emit_insn (gen_andsi3 (temp, temp, operands[1])); emit_insn (gen_nsau (temp, temp)); emit_insn (gen_negsi2 (temp, temp)); emit_insn (gen_addsi3 (operands[0], temp, GEN_INT (32))); DONE;});; There is no RTL operator corresponding to NSAU.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -