📄 tfrridb.tex
字号:
% This is part of the TFTB Reference Manual.% Copyright (C) 1996 CNRS (France) and Rice University (US).% See the file refguide.tex for copying conditions.\markright{tfrridb}\hspace*{-1.6cm}{\Large \bf tfrridb}\vspace*{-.4cm}\hspace*{-1.6cm}\rule[0in]{16.5cm}{.02cm}\vspace*{.2cm}{\bf \large \fontfamily{cmss}\selectfont Purpose}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}Reduced Interference Distribution with Bessel kernel.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Synopsis}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}\begin{verbatim}[tfr,t,f] = tfrridb(x)[tfr,t,f] = tfrridb(x,t)[tfr,t,f] = tfrridb(x,t,N)[tfr,t,f] = tfrridb(x,t,N,g)[tfr,t,f] = tfrridb(x,t,N,g,h)[tfr,t,f] = tfrridb(x,t,N,g,h,trace)\end{verbatim}\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Description}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm} Reduced Interference Distribution with a kernel based on the Bessel function of the first kind. {\ty tfrridb} computes either the distribution of a discrete-time signal {\ty x}, or the cross representation between two signals. This distribution writes\begin{eqnarray*}RIDB_x(t,\nu)&=&\int_{-\infty}^{+\infty} h(\tau) R_x(t,\tau)\,e^{-j2\pi\nu\tau}\ d\tau\\{\rm with}\quadR_x(t,\tau)&=&\int_{t-|\tau|}^{t+|\tau|}\ \dfrac{2\ g(v)}{\pi|\tau|}\ \sqrt{1-\left(\frac{v-t}{\tau}\right)^2} x(v+\frac{\tau}{2})\ x^*(v-\frac{\tau}{2})\ dv.\end{eqnarray*}\hspace*{-.5cm}\begin{tabular*}{14cm}{p{1.5cm} p{8cm} c}Name & Description & Default value\\\hline {\ty x} & signal if auto-RIDB, or {\ty [x1,x2]} if cross-RIDB ({\ty Nx=length(x)})\\ {\ty t} & time instant(s) & {\ty (1:Nx)}\\ {\ty N} & number of frequency bins & {\ty Nx}\\ {\ty g} & time smoothing window, {\ty G(0)} being forced to {\ty 1}, where {\ty G(f)} is the Fourier transform of {\ty g(t)} & {\ty window(odd(N/10))}\\ {\ty h} & frequency smoothing window, {\ty h(0)} being forced to {\ty 1} & {\ty window(odd(N/4))}\\ {\ty trace} & if nonzero, the progression of the algorithm is shown & {\ty 0}\\ \hline {\ty tfr} & time-frequency representation\\ {\ty f} & vector of normalized frequencies\\\hline\end{tabular*}\vspace*{.2cm}When called without output arguments, {\ty tfrridb} runs {\ty tfrqview}.\end{minipage}\newpage{\bf \large \fontfamily{cmss}\selectfont Example}\begin{verbatim} sig=[fmlin(128,0.05,0.3)+fmlin(128,0.15,0.4)]; g=window(31,'rect'); h=window(63,'rect'); tfrridb(sig,1:128,128,g,h,1);\end{verbatim}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont See Also}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}all the {\ty tfr*} functions.\end{minipage}\vspace*{.5cm}{\bf \large \fontfamily{cmss}\selectfont Reference}\\\hspace*{1.5cm}\begin{minipage}[t]{13.5cm}[1] Z. Guo, L.G. Durand, H.C. Lee ``The Time-Frequency Distributions ofNonstationary Signals Based on a Bessel Kernel'' IEEE Trans. on SignalProc., vol 42, pp. 1700-1707, july 1994.\end{minipage}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -