📄 deflaterhuffman.cs
字号:
// DeflaterHuffman.cs
//
// Copyright (C) 2001 Mike Krueger
// Copyright (C) 2004 John Reilly
//
// This file was translated from java, it was part of the GNU Classpath
// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library. Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
//
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent
// modules, and to copy and distribute the resulting executable under
// terms of your choice, provided that you also meet, for each linked
// independent module, the terms and conditions of the license of that
// module. An independent module is a module which is not derived from
// or based on this library. If you modify this library, you may extend
// this exception to your version of the library, but you are not
// obligated to do so. If you do not wish to do so, delete this
// exception statement from your version.
using System;
namespace ICSharpCode.SharpZipLib.Zip.Compression
{
/// <summary>
/// This is the DeflaterHuffman class.
///
/// This class is <i>not</i> thread safe. This is inherent in the API, due
/// to the split of Deflate and SetInput.
///
/// author of the original java version : Jochen Hoenicke
/// </summary>
public class DeflaterHuffman
{
const int BUFSIZE = 1 << (DeflaterConstants.DEFAULT_MEM_LEVEL + 6);
const int LITERAL_NUM = 286;
// Number of distance codes
const int DIST_NUM = 30;
// Number of codes used to transfer bit lengths
const int BITLEN_NUM = 19;
// repeat previous bit length 3-6 times (2 bits of repeat count)
const int REP_3_6 = 16;
// repeat a zero length 3-10 times (3 bits of repeat count)
const int REP_3_10 = 17;
// repeat a zero length 11-138 times (7 bits of repeat count)
const int REP_11_138 = 18;
const int EOF_SYMBOL = 256;
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.
static readonly int[] BL_ORDER = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
static readonly byte[] bit4Reverse = {
0,
8,
4,
12,
2,
10,
6,
14,
1,
9,
5,
13,
3,
11,
7,
15
};
static short[] staticLCodes;
static byte[] staticLLength;
static short[] staticDCodes;
static byte[] staticDLength;
class Tree
{
#region Instance Fields
public short[] freqs;
public byte[] length;
public int minNumCodes;
public int numCodes;
short[] codes;
int[] bl_counts;
int maxLength;
DeflaterHuffman dh;
#endregion
#region Constructors
public Tree(DeflaterHuffman dh, int elems, int minCodes, int maxLength)
{
this.dh = dh;
this.minNumCodes = minCodes;
this.maxLength = maxLength;
freqs = new short[elems];
bl_counts = new int[maxLength];
}
#endregion
/// <summary>
/// Resets the internal state of the tree
/// </summary>
public void Reset()
{
for (int i = 0; i < freqs.Length; i++) {
freqs[i] = 0;
}
codes = null;
length = null;
}
public void WriteSymbol(int code)
{
// if (DeflaterConstants.DEBUGGING) {
// freqs[code]--;
// // Console.Write("writeSymbol("+freqs.length+","+code+"): ");
// }
dh.pending.WriteBits(codes[code] & 0xffff, length[code]);
}
/// <summary>
/// Check that all frequencies are zero
/// </summary>
/// <exception cref="SharpZipBaseException">
/// At least one frequency is non-zero
/// </exception>
public void CheckEmpty()
{
bool empty = true;
for (int i = 0; i < freqs.Length; i++) {
if (freqs[i] != 0) {
//Console.WriteLine("freqs[" + i + "] == " + freqs[i]);
empty = false;
}
}
if (!empty) {
throw new SharpZipBaseException("!Empty");
}
}
/// <summary>
/// Set static codes and length
/// </summary>
/// <param name="staticCodes">new codes</param>
/// <param name="staticLengths">length for new codes</param>
public void SetStaticCodes(short[] staticCodes, byte[] staticLengths)
{
codes = staticCodes;
length = staticLengths;
}
/// <summary>
/// Build dynamic codes and lengths
/// </summary>
public void BuildCodes()
{
int numSymbols = freqs.Length;
int[] nextCode = new int[maxLength];
int code = 0;
codes = new short[freqs.Length];
// if (DeflaterConstants.DEBUGGING) {
// //Console.WriteLine("buildCodes: "+freqs.Length);
// }
for (int bits = 0; bits < maxLength; bits++) {
nextCode[bits] = code;
code += bl_counts[bits] << (15 - bits);
// if (DeflaterConstants.DEBUGGING) {
// //Console.WriteLine("bits: " + ( bits + 1) + " count: " + bl_counts[bits]
// +" nextCode: "+code);
// }
}
#if DebugDeflation
if ( DeflaterConstants.DEBUGGING && (code != 65536) )
{
throw new SharpZipBaseException("Inconsistent bl_counts!");
}
#endif
for (int i=0; i < numCodes; i++) {
int bits = length[i];
if (bits > 0) {
// if (DeflaterConstants.DEBUGGING) {
// //Console.WriteLine("codes["+i+"] = rev(" + nextCode[bits-1]+"),
// +bits);
// }
codes[i] = BitReverse(nextCode[bits-1]);
nextCode[bits-1] += 1 << (16 - bits);
}
}
}
public void BuildTree()
{
int numSymbols = freqs.Length;
/* heap is a priority queue, sorted by frequency, least frequent
* nodes first. The heap is a binary tree, with the property, that
* the parent node is smaller than both child nodes. This assures
* that the smallest node is the first parent.
*
* The binary tree is encoded in an array: 0 is root node and
* the nodes 2*n+1, 2*n+2 are the child nodes of node n.
*/
int[] heap = new int[numSymbols];
int heapLen = 0;
int maxCode = 0;
for (int n = 0; n < numSymbols; n++) {
int freq = freqs[n];
if (freq != 0) {
// Insert n into heap
int pos = heapLen++;
int ppos;
while (pos > 0 && freqs[heap[ppos = (pos - 1) / 2]] > freq) {
heap[pos] = heap[ppos];
pos = ppos;
}
heap[pos] = n;
maxCode = n;
}
}
/* We could encode a single literal with 0 bits but then we
* don't see the literals. Therefore we force at least two
* literals to avoid this case. We don't care about order in
* this case, both literals get a 1 bit code.
*/
while (heapLen < 2) {
int node = maxCode < 2 ? ++maxCode : 0;
heap[heapLen++] = node;
}
numCodes = Math.Max(maxCode + 1, minNumCodes);
int numLeafs = heapLen;
int[] childs = new int[4 * heapLen - 2];
int[] values = new int[2 * heapLen - 1];
int numNodes = numLeafs;
for (int i = 0; i < heapLen; i++) {
int node = heap[i];
childs[2 * i] = node;
childs[2 * i + 1] = -1;
values[i] = freqs[node] << 8;
heap[i] = i;
}
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
int first = heap[0];
int last = heap[--heapLen];
// Propagate the hole to the leafs of the heap
int ppos = 0;
int path = 1;
while (path < heapLen) {
if (path + 1 < heapLen && values[heap[path]] > values[heap[path+1]]) {
path++;
}
heap[ppos] = heap[path];
ppos = path;
path = path * 2 + 1;
}
/* Now propagate the last element down along path. Normally
* it shouldn't go too deep.
*/
int lastVal = values[last];
while ((path = ppos) > 0 && values[heap[ppos = (path - 1)/2]] > lastVal) {
heap[path] = heap[ppos];
}
heap[path] = last;
int second = heap[0];
// Create a new node father of first and second
last = numNodes++;
childs[2 * last] = first;
childs[2 * last + 1] = second;
int mindepth = Math.Min(values[first] & 0xff, values[second] & 0xff);
values[last] = lastVal = values[first] + values[second] - mindepth + 1;
// Again, propagate the hole to the leafs
ppos = 0;
path = 1;
while (path < heapLen) {
if (path + 1 < heapLen && values[heap[path]] > values[heap[path+1]]) {
path++;
}
heap[ppos] = heap[path];
ppos = path;
path = ppos * 2 + 1;
}
// Now propagate the new element down along path
while ((path = ppos) > 0 && values[heap[ppos = (path - 1)/2]] > lastVal) {
heap[path] = heap[ppos];
}
heap[path] = last;
} while (heapLen > 1);
if (heap[0] != childs.Length / 2 - 1) {
throw new SharpZipBaseException("Heap invariant violated");
}
BuildLength(childs);
}
/// <summary>
/// Get encoded length
/// </summary>
/// <returns>Encoded length, the sum of frequencies * lengths</returns>
public int GetEncodedLength()
{
int len = 0;
for (int i = 0; i < freqs.Length; i++) {
len += freqs[i] * length[i];
}
return len;
}
/// <summary>
/// Scan a literal or distance tree to determine the frequencies of the codes
/// in the bit length tree.
/// </summary>
public void CalcBLFreq(Tree blTree)
{
int max_count; /* max repeat count */
int min_count; /* min repeat count */
int count; /* repeat count of the current code */
int curlen = -1; /* length of current code */
int i = 0;
while (i < numCodes) {
count = 1;
int nextlen = length[i];
if (nextlen == 0) {
max_count = 138;
min_count = 3;
} else {
max_count = 6;
min_count = 3;
if (curlen != nextlen) {
blTree.freqs[nextlen]++;
count = 0;
}
}
curlen = nextlen;
i++;
while (i < numCodes && curlen == length[i]) {
i++;
if (++count >= max_count) {
break;
}
}
if (count < min_count) {
blTree.freqs[curlen] += (short)count;
} else if (curlen != 0) {
blTree.freqs[REP_3_6]++;
} else if (count <= 10) {
blTree.freqs[REP_3_10]++;
} else {
blTree.freqs[REP_11_138]++;
}
}
}
/// <summary>
/// Write tree values
/// </summary>
/// <param name="blTree">Tree to write</param>
public void WriteTree(Tree blTree)
{
int max_count; // max repeat count
int min_count; // min repeat count
int count; // repeat count of the current code
int curlen = -1; // length of current code
int i = 0;
while (i < numCodes) {
count = 1;
int nextlen = length[i];
if (nextlen == 0) {
max_count = 138;
min_count = 3;
} else {
max_count = 6;
min_count = 3;
if (curlen != nextlen) {
blTree.WriteSymbol(nextlen);
count = 0;
}
}
curlen = nextlen;
i++;
while (i < numCodes && curlen == length[i]) {
i++;
if (++count >= max_count) {
break;
}
}
if (count < min_count) {
while (count-- > 0) {
blTree.WriteSymbol(curlen);
}
} else if (curlen != 0) {
blTree.WriteSymbol(REP_3_6);
dh.pending.WriteBits(count - 3, 2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -