📄 rfc1951.txt
字号:
represent the value 14. Extra Extra Extra Code Bits Dist Code Bits Dist Code Bits Distance ---- ---- ---- ---- ---- ------ ---- ---- -------- 0 0 1 10 4 33-48 20 9 1025-1536 1 0 2 11 4 49-64 21 9 1537-2048 2 0 3 12 5 65-96 22 10 2049-3072 3 0 4 13 5 97-128 23 10 3073-4096 4 1 5,6 14 6 129-192 24 11 4097-6144 5 1 7,8 15 6 193-256 25 11 6145-8192 6 2 9-12 16 7 257-384 26 12 8193-12288 7 2 13-16 17 7 385-512 27 12 12289-16384 8 3 17-24 18 8 513-768 28 13 16385-24576 9 3 25-32 19 8 769-1024 29 13 24577-32768 3.2.6. Compression with fixed Huffman codes (BTYPE=01) The Huffman codes for the two alphabets are fixed, and are not represented explicitly in the data. The Huffman code lengths for the literal/length alphabet are: Lit Value Bits Codes --------- ---- ----- 0 - 143 8 00110000 through 10111111 144 - 255 9 110010000 through 111111111 256 - 279 7 0000000 through 0010111 280 - 287 8 11000000 through 11000111Deutsch Informational [Page 12]RFC 1951 DEFLATE Compressed Data Format Specification May 1996 The code lengths are sufficient to generate the actual codes, as described above; we show the codes in the table for added clarity. Literal/length values 286-287 will never actually occur in the compressed data, but participate in the code construction. Distance codes 0-31 are represented by (fixed-length) 5-bit codes, with possible additional bits as shown in the table shown in Paragraph 3.2.5, above. Note that distance codes 30- 31 will never actually occur in the compressed data. 3.2.7. Compression with dynamic Huffman codes (BTYPE=10) The Huffman codes for the two alphabets appear in the block immediately after the header bits and before the actual compressed data, first the literal/length code and then the distance code. Each code is defined by a sequence of code lengths, as discussed in Paragraph 3.2.2, above. For even greater compactness, the code length sequences themselves are compressed using a Huffman code. The alphabet for code lengths is as follows: 0 - 15: Represent code lengths of 0 - 15 16: Copy the previous code length 3 - 6 times. The next 2 bits indicate repeat length (0 = 3, ... , 3 = 6) Example: Codes 8, 16 (+2 bits 11), 16 (+2 bits 10) will expand to 12 code lengths of 8 (1 + 6 + 5) 17: Repeat a code length of 0 for 3 - 10 times. (3 bits of length) 18: Repeat a code length of 0 for 11 - 138 times (7 bits of length) A code length of 0 indicates that the corresponding symbol in the literal/length or distance alphabet will not occur in the block, and should not participate in the Huffman code construction algorithm given earlier. If only one distance code is used, it is encoded using one bit, not zero bits; in this case there is a single code length of one, with one unused code. One distance code of zero bits means that there are no distance codes used at all (the data is all literals). We can now define the format of the block: 5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286) 5 Bits: HDIST, # of Distance codes - 1 (1 - 32) 4 Bits: HCLEN, # of Code Length codes - 4 (4 - 19)Deutsch Informational [Page 13]RFC 1951 DEFLATE Compressed Data Format Specification May 1996 (HCLEN + 4) x 3 bits: code lengths for the code length alphabet given just above, in the order: 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 These code lengths are interpreted as 3-bit integers (0-7); as above, a code length of 0 means the corresponding symbol (literal/length or distance code length) is not used. HLIT + 257 code lengths for the literal/length alphabet, encoded using the code length Huffman code HDIST + 1 code lengths for the distance alphabet, encoded using the code length Huffman code The actual compressed data of the block, encoded using the literal/length and distance Huffman codes The literal/length symbol 256 (end of data), encoded using the literal/length Huffman code The code length repeat codes can cross from HLIT + 257 to the HDIST + 1 code lengths. In other words, all code lengths form a single sequence of HLIT + HDIST + 258 values. 3.3. Compliance A compressor may limit further the ranges of values specified in the previous section and still be compliant; for example, it may limit the range of backward pointers to some value smaller than 32K. Similarly, a compressor may limit the size of blocks so that a compressible block fits in memory. A compliant decompressor must accept the full range of possible values defined in the previous section, and must accept blocks of arbitrary size.4. Compression algorithm details While it is the intent of this document to define the "deflate" compressed data format without reference to any particular compression algorithm, the format is related to the compressed formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below); since many variations of LZ77 are patented, it is strongly recommended that the implementor of a compressor follow the general algorithm presented here, which is known not to be patented per se. The material in this section is not part of the definition of theDeutsch Informational [Page 14]RFC 1951 DEFLATE Compressed Data Format Specification May 1996 specification per se, and a compressor need not follow it in order to be compliant. The compressor terminates a block when it determines that starting a new block with fresh trees would be useful, or when the block size fills up the compressor's block buffer. The compressor uses a chained hash table to find duplicated strings, using a hash function that operates on 3-byte sequences. At any given point during compression, let XYZ be the next 3 input bytes to be examined (not necessarily all different, of course). First, the compressor examines the hash chain for XYZ. If the chain is empty, the compressor simply writes out X as a literal byte and advances one byte in the input. If the hash chain is not empty, indicating that the sequence XYZ (or, if we are unlucky, some other 3 bytes with the same hash function value) has occurred recently, the compressor compares all strings on the XYZ hash chain with the actual input data sequence starting at the current point, and selects the longest match. The compressor searches the hash chains starting with the most recent strings, to favor small distances and thus take advantage of the Huffman encoding. The hash chains are singly linked. There are no deletions from the hash chains; the algorithm simply discards matches that are too old. To avoid a worst-case situation, very long hash chains are arbitrarily truncated at a certain length, determined by a run-time parameter. To improve overall compression, the compressor optionally defers the selection of matches ("lazy matching"): after a match of length N has been found, the compressor searches for a longer match starting at the next input byte. If it finds a longer match, it truncates the previous match to a length of one (thus producing a single literal byte) and then emits the longer match. Otherwise, it emits the original match, and, as described above, advances N bytes before continuing. Run-time parameters also control this "lazy match" procedure. If compression ratio is most important, the compressor attempts a complete second search regardless of the length of the first match. In the normal case, if the current match is "long enough", the compressor reduces the search for a longer match, thus speeding up the process. If speed is most important, the compressor inserts new strings in the hash table only when no match was found, or when the match is not "too long". This degrades the compression ratio but saves time since there are both fewer insertions and fewer searches.Deutsch Informational [Page 15]RFC 1951 DEFLATE Compressed Data Format Specification May 19965. References [1] Huffman, D. A., "A Method for the Construction of Minimum Redundancy Codes", Proceedings of the Institute of Radio Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101. [2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data Compression", IEEE Transactions on Information Theory, Vol. 23, No. 3, pp. 337-343. [3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources, available in ftp://ftp.uu.net/pub/archiving/zip/doc/ [4] Gailly, J.-L., and Adler, M., GZIP documentation and sources, available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/ [5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169. [6] Hirschberg and Lelewer, "Efficient decoding of prefix codes," Comm. ACM, 33,4, April 1990, pp. 449-459.6. Security Considerations Any data compression method involves the reduction of redundancy in the data. Consequently, any corruption of the data is likely to have severe effects and be difficult to correct. Uncompressed text, on the other hand, will probably still be readable despite the presence of some corrupted bytes. It is recommended that systems using this data format provide some means of validating the integrity of the compressed data. See reference [3], for example.7. Source code Source code for a C language implementation of a "deflate" compliant compressor and decompressor is available within the zlib package at ftp://ftp.uu.net/pub/archiving/zip/zlib/.8. Acknowledgements Trademarks cited in this document are the property of their respective owners. Phil Katz designed the deflate format. Jean-Loup Gailly and Mark Adler wrote the related software described in this specification. Glenn Randers-Pehrson converted this document to RFC and HTML format.Deutsch Informational [Page 16]RFC 1951 DEFLATE Compressed Data Format Specification May 19969. Author's Address L. Peter Deutsch Aladdin Enterprises 203 Santa Margarita Ave. Menlo Park, CA 94025 Phone: (415) 322-0103 (AM only) FAX: (415) 322-1734 EMail: <ghost@aladdin.com> Questions about the technical content of this specification can be sent by email to: Jean-Loup Gailly <gzip@prep.ai.mit.edu> and Mark Adler <madler@alumni.caltech.edu> Editorial comments on this specification can be sent by email to: L. Peter Deutsch <ghost@aladdin.com> and Glenn Randers-Pehrson <randeg@alumni.rpi.edu>Deutsch Informational [Page 17]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -