📄 flow_distance.cpp
字号:
///////////////////////////////////////////////////////////
// //
// SAGA //
// //
// System for Automated Geoscientific Analyses //
// //
// Module Library: //
// ta_hydrology //
// //
//-------------------------------------------------------//
// //
// Flow_Distance.cpp //
// //
// Copyright (C) 2005 by //
// Olaf Conrad //
// //
//-------------------------------------------------------//
// //
// This file is part of 'SAGA - System for Automated //
// Geoscientific Analyses'. SAGA is free software; you //
// can redistribute it and/or modify it under the terms //
// of the GNU General Public License as published by the //
// Free Software Foundation; version 2 of the License. //
// //
// SAGA is distributed in the hope that it will be //
// useful, but WITHOUT ANY WARRANTY; without even the //
// implied warranty of MERCHANTABILITY or FITNESS FOR A //
// PARTICULAR PURPOSE. See the GNU General Public //
// License for more details. //
// //
// You should have received a copy of the GNU General //
// Public License along with this program; if not, //
// write to the Free Software Foundation, Inc., //
// 59 Temple Place - Suite 330, Boston, MA 02111-1307, //
// USA. //
// //
//-------------------------------------------------------//
// //
// e-mail: oconrad@saga-gis.org //
// //
// contact: Olaf Conrad //
// Institute of Geography //
// University of Goettingen //
// Goldschmidtstr. 5 //
// 37077 Goettingen //
// Germany //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
#include "Flow_Distance.h"
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
CFlow_Distance::CFlow_Distance(void)
{
//-----------------------------------------------------
Set_Name(_TL("Flow Path Length"));
Set_Author(_TL("Copyrights (c) 2005 by Olaf Conrad"));
Set_Description (_TW(
"This module calculates the average flow path length starting from the seeds, "
"that are given by the optional \'Seeds\' grid and optionally from cells without upslope contributing areas "
"(i.e. summits, ridges). Seeds will be all grid cells, that "
"are not \'no data\' values. If seeds are not given, only summits and ridges as given by the flow routing will be taken into account. "
"Available flow routing methods are based on the "
"\'Deterministic 8 (D8)\' (Callaghan and Mark 1984) and the \'Multiple Flow Direction (FD8)\' "
"(Freeman 1991, Quinn et al. 1991) algorithms.\n\n"
"References:\n\n"
"Deterministic 8\n"
"- O'Callaghan, J.F. / Mark, D.M. (1984):\n"
" 'The extraction of drainage networks from digital elevation data',\n"
" Computer Vision, Graphics and Image Processing, 28:323-344\n\n"
"- Freeman, G.T. (1991):\n"
" 'Calculating catchment area with divergent flow based on a regular grid',\n"
" Computers and Geosciences, 17:413-22\n\n"
"- Quinn, P.F. / Beven, K.J. / Chevallier, P. / Planchon, O. (1991):\n"
" 'The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models',\n"
" Hydrological Processes, 5:59-79\n\n")
);
//-----------------------------------------------------
// Input...
Parameters.Add_Grid(
NULL , "ELEVATION" , _TL("Elevation"),
_TL(""),
PARAMETER_INPUT
);
Parameters.Add_Grid(
NULL , "SEED" , _TL("Seeds"),
_TL(""),
PARAMETER_INPUT_OPTIONAL
);
//-----------------------------------------------------
// Output...
Parameters.Add_Grid(
NULL , "LENGTH" , _TL("Flow Path Length"),
_TL(""),
PARAMETER_OUTPUT
);
//-----------------------------------------------------
// Options...
Parameters.Add_Value(
NULL , "SEEDS_ONLY" , _TL("Seeds Only"),
_TL("Use only seed cells as starting points."),
PARAMETER_TYPE_Bool, false
);
Parameters.Add_Choice(
NULL , "METHOD" , _TL("Flow Routing Algorithm"),
_TL(""),
CSG_String::Format(SG_T("%s|%s|"),
_TL("Deterministic 8 (D8)"),
_TL("Multiple Flow Direction (FD8)")
), 1
);
Parameters.Add_Value(
NULL , "CONVERGENCE" , _TL("Convergence (FD8)"),
_TL("Convergence factor for the \'Multiple Flow Direction\' algorithm (after Freeman 1991)"),
PARAMETER_TYPE_Double , 1.1, 0.0, true
);
}
//---------------------------------------------------------
CFlow_Distance::~CFlow_Distance(void)
{}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
bool CFlow_Distance::On_Execute(void)
{
bool bSeeds;
int x, y, n, Method;
CSG_Grid *pSeed;
//-------------------------------------------------
m_pDTM = Parameters("ELEVATION") ->asGrid();
pSeed = Parameters("SEED") ->asGrid();
m_pLength = Parameters("LENGTH") ->asGrid();
m_Converge = Parameters("CONVERGENCE") ->asDouble();
bSeeds = Parameters("SEEDS_ONLY") ->asBool();
Method = Parameters("METHOD") ->asInt();
m_pWeight = SG_Create_Grid(m_pLength, GRID_TYPE_Float);
m_pWeight ->Assign(0.0);
m_pLength ->Assign(0.0);
//-------------------------------------------------
for(n=0; n<Get_NCells() && Set_Progress_NCells(n); n++)
{
m_pDTM->Get_Sorted(n, x, y);
if( pSeed && !pSeed->is_NoData(x, y) )
{
m_pLength->Set_Value(x, y, 0.0);
m_pWeight->Set_Value(x, y, 0.0);
}
else if( m_pWeight->asDouble(x, y) > 0.0 )
{
m_pLength->Set_Value(x, y, m_pLength->asDouble(x, y) / m_pWeight->asDouble(x, y));
}
else if( bSeeds )
{
m_pLength->Set_NoData(x, y);
continue;
}
switch( Method )
{
case 0: Set_Length_D8 (x, y); break;
case 1: Set_Length_MFD (x, y); break;
}
}
//-------------------------------------------------
delete(m_pWeight);
DataObject_Set_Colors(m_pLength, 100, SG_COLORS_WHITE_BLUE);
return( true );
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
void CFlow_Distance::Set_Length_D8(int x, int y)
{
int i, ix, iy;
if( m_pDTM->is_InGrid(x, y) && (i = m_pDTM->Get_Gradient_NeighborDir(x, y, true)) >= 0 )
{
ix = Get_xTo(i, x);
iy = Get_yTo(i, y);
if( m_pDTM->is_InGrid(ix, iy) )
{
m_pLength->Add_Value(ix, iy, m_pLength->asDouble(x, y) + Get_Length(i));
m_pWeight->Add_Value(ix, iy, 1.0);
}
}
}
//---------------------------------------------------------
void CFlow_Distance::Set_Length_MFD(int x, int y)
{
int i, ix, iy;
double z, d, dzSum, dz[8];
if( m_pDTM->is_InGrid(x, y) )
{
z = m_pDTM->asDouble(x, y);
dzSum = 0.0;
for(i=0; i<8; i++)
{
ix = Get_xTo(i, x);
iy = Get_yTo(i, y);
if( m_pDTM->is_InGrid(ix, iy) && (d = z - m_pDTM->asDouble(ix, iy)) > 0.0 )
{
dz[i] = pow(d / Get_Length(i), m_Converge);
dzSum += dz[i];
}
else
{
dz[i] = 0.0;
}
}
if( dzSum > 0.0 )
{
d = m_pLength->asDouble(x, y);
for(i=0; i<8; i++)
{
if( dz[i] > 0.0 )
{
ix = Get_xTo(i, x);
iy = Get_yTo(i, y);
dz[i] /= dzSum;
m_pLength->Add_Value(ix, iy, dz[i] * (d + Get_Length(i)));
m_pWeight->Add_Value(ix, iy, dz[i]);
}
}
}
}
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -