📄 grid_classify_supervised.cpp
字号:
///////////////////////////////////////////////////////////
// //
// SAGA //
// //
// System for Automated Geoscientific Analyses //
// //
// Module Library: //
// Grid_Discretisation //
// //
//-------------------------------------------------------//
// //
// Grid_Classify_Supervised.cpp //
// //
// Copyright (C) 2005 by //
// Olaf Conrad //
// //
//-------------------------------------------------------//
// //
// This file is part of 'SAGA - System for Automated //
// Geoscientific Analyses'. SAGA is free software; you //
// can redistribute it and/or modify it under the terms //
// of the GNU General Public License as published by the //
// Free Software Foundation; version 2 of the License. //
// //
// SAGA is distributed in the hope that it will be //
// useful, but WITHOUT ANY WARRANTY; without even the //
// implied warranty of MERCHANTABILITY or FITNESS FOR A //
// PARTICULAR PURPOSE. See the GNU General Public //
// License for more details. //
// //
// You should have received a copy of the GNU General //
// Public License along with this program; if not, //
// write to the Free Software Foundation, Inc., //
// 59 Temple Place - Suite 330, Boston, MA 02111-1307, //
// USA. //
// //
//-------------------------------------------------------//
// //
// e-mail: oconrad@saga-gis.org //
// //
// contact: Olaf Conrad //
// Institute of Geography //
// University of Goettingen //
// Goldschmidtstr. 5 //
// 37077 Goettingen //
// Germany //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
#include <string.h>
#include "Grid_Classify_Supervised.h"
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
enum
{
CLASS_NR = 0,
CLASS_ID,
CLASS_N,
CLASS_M,
CLASS_S
};
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
#define GET_GRID_VALUE(x, y, i) (m_bNormalise ? (m_pGrids->asGrid(i)->asDouble(x, y) - m_pGrids->asGrid(i)->Get_ArithMean()) / sqrt(m_pGrids->asGrid(i)->Get_Variance()) : m_pGrids->asGrid(i)->asDouble(x, y))
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
CGrid_Classify_Supervised::CGrid_Classify_Supervised(void)
{
CSG_Parameter *pNode;
//-----------------------------------------------------
Set_Name (_TL("Supervised Classification"));
Set_Author (_TL("Copyrights (c) 2005 by Olaf Conrad"));
Set_Description (_TW(
"Supervised Classification: Minimum Distance, Maximum Likelihood.\n"
));
//-----------------------------------------------------
Parameters.Add_Grid_List(
NULL , "GRIDS" , _TL("Grids"),
_TL(""),
PARAMETER_INPUT
);
pNode = Parameters.Add_Shapes(
NULL , "POLYGONS" , _TL("Training Areas"),
_TL(""),
PARAMETER_INPUT, SHAPE_TYPE_Polygon
);
Parameters.Add_Table_Field(
pNode , "FIELD" , _TL("Class Identifier"),
_TL("")
);
Parameters.Add_Table(
NULL , "CLASSES" , _TL("Class Information"),
_TL(""),
PARAMETER_OUTPUT
);
Parameters.Add_Grid(
NULL , "RESULT" , _TL("Classification"),
_TL(""),
PARAMETER_OUTPUT, true, GRID_TYPE_Char
);
Parameters.Add_Grid(
NULL , "ML_PROB" , _TL("Probability (Maximum Likelihood)"),
_TL(""),
PARAMETER_OUTPUT_OPTIONAL
);
Parameters.Add_Choice(
NULL , "METHOD" , _TL("Method"),
_TL(""),
CSG_String::Format(SG_T("%s|%s|"),
_TL("Minimum Distance"),
_TL("Maximum Likelihood")
), 0
);
Parameters.Add_Value(
NULL , "NORMALISE" , _TL("Normalise"),
_TL("Automatically normalise grids before classifying. Useful for minimum distance classification."),
PARAMETER_TYPE_Bool, false
);
Parameters.Add_Value(
NULL , "ML_THRESHOLD" , _TL("Probability Threshold (Percent)"),
_TL("Let pixel stay unclassified, if maximum likelihood probability is less than threshold."),
PARAMETER_TYPE_Double, 0.0, 0.0, true, 100.0, true
);
}
//---------------------------------------------------------
CGrid_Classify_Supervised::~CGrid_Classify_Supervised(void)
{}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
bool CGrid_Classify_Supervised::On_Execute(void)
{
bool bResult = false;
//-------------------------------------------------
m_pClasses = Parameters("CLASSES") ->asTable();
m_pGrids = Parameters("GRIDS") ->asGridList();
m_pResult = Parameters("RESULT") ->asGrid();
m_bNormalise = Parameters("NORMALISE") ->asBool();
m_pProbability = Parameters("ML_PROB") ->asGrid();
m_ML_Threshold = Parameters("ML_THRESHOLD")->asDouble();
//-------------------------------------------------
if( Initialise() )
{
switch( Parameters("METHOD")->asInt() )
{
case 0: default: bResult = Set_Minimum_Distance(); break;
case 1: bResult = Set_Maximum_Likelihood(); break;
}
Finalise();
}
//-------------------------------------------------
return( bResult );
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
bool CGrid_Classify_Supervised::Initialise(void)
{
int x, y, iGrid, iClass, iPolygon, iField;
double d, n;
TSG_Point p;
CSG_Table_Record *pClass;
CSG_Shapes *pPolygons;
CSG_Shape_Polygon *pPolygon;
//-----------------------------------------------------
for(iGrid=m_pGrids->Get_Count()-1; iGrid>=0; iGrid--)
{
if( m_pGrids->asGrid(iGrid)->Get_Variance() == 0.0 )
{
m_pGrids->Del_Item(iGrid);
}
}
//-----------------------------------------------------
if( m_pGrids->Get_Count() > 1 )
{
iField = Parameters("FIELD") ->asInt();
pPolygons = Parameters("POLYGONS") ->asShapes();
m_pClasses->Destroy();
m_pClasses->Set_Name(_TL("Class Information"));
m_pClasses->Add_Field(_TL("NR") , TABLE_FIELDTYPE_Int);
m_pClasses->Add_Field(_TL("IDENTIFIER") , TABLE_FIELDTYPE_String);
m_pClasses->Add_Field(_TL("ELEMENTS") , TABLE_FIELDTYPE_Int);
for(iGrid=0; iGrid<m_pGrids->Get_Count(); iGrid++)
{
m_pClasses->Add_Field(CSG_String::Format(_TL("MEAN_%02d") , iGrid + 1), TABLE_FIELDTYPE_Double);
m_pClasses->Add_Field(CSG_String::Format(_TL("STDDEV_%02d"), iGrid + 1), TABLE_FIELDTYPE_Double);
}
//-------------------------------------------------
for(y=0, p.y=Get_YMin(); y<Get_NY() && Set_Progress(y); y++, p.y+=Get_Cellsize())
{
for(x=0, p.x=Get_XMin(); x<Get_NX(); x++, p.x+=Get_Cellsize())
{
bool bNoData;
for(iGrid=0, bNoData=false; iGrid<m_pGrids->Get_Count() && !bNoData; iGrid++)
{
if( m_pGrids->asGrid(iGrid)->is_NoData(x, y) )
{
bNoData = true;
}
}
//-----------------------------------------
if( bNoData )
{
m_pResult->Set_NoData(x, y);
}
else
{
m_pResult->Set_Value(x, y, 0.0);
for(iPolygon=0; iPolygon<pPolygons->Get_Count(); iPolygon++)
{
pPolygon = (CSG_Shape_Polygon *)pPolygons->Get_Shape(iPolygon);
if( pPolygon->is_Containing(p) && (pClass = Get_Class(pPolygon->Get_Record()->asString(iField))) != NULL )
{
pClass->Add_Value(CLASS_N, 1.0);
for(iGrid=0; iGrid<m_pGrids->Get_Count(); iGrid++)
{
d = GET_GRID_VALUE(x, y, iGrid);
pClass->Add_Value(CLASS_M + 2 * iGrid, d);
pClass->Add_Value(CLASS_S + 2 * iGrid, d * d);
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -