📄 thin_plate_spline.cpp
字号:
///////////////////////////////////////////////////////////
// //
// SAGA //
// //
// System for Automated Geoscientific Analyses //
// //
// Module Library: //
// grid_spline //
// //
//-------------------------------------------------------//
// //
// Thin_Plate_Spline.cpp //
// //
// Copyright (C) 2006 by //
// Olaf Conrad //
// //
//-------------------------------------------------------//
// //
// This file is part of 'SAGA - System for Automated //
// Geoscientific Analyses'. SAGA is free software; you //
// can redistribute it and/or modify it under the terms //
// of the GNU General Public License as published by the //
// Free Software Foundation; version 2 of the License. //
// //
// SAGA is distributed in the hope that it will be //
// useful, but WITHOUT ANY WARRANTY; without even the //
// implied warranty of MERCHANTABILITY or FITNESS FOR A //
// PARTICULAR PURPOSE. See the GNU General Public //
// License for more details. //
// //
// You should have received a copy of the GNU General //
// Public License along with this program; if not, //
// write to the Free Software Foundation, Inc., //
// 59 Temple Place - Suite 330, Boston, MA 02111-1307, //
// USA. //
// //
//-------------------------------------------------------//
// //
// e-mail: oconrad@saga-gis.org //
// //
// contact: Olaf Conrad //
// Institute of Geography //
// University of Goettingen //
// Goldschmidtstr. 5 //
// 37077 Goettingen //
// Germany //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
//
// Based on:
//// Thin Plate Spline demo/example in C++// Copyright (C) 2003, 2005 by Jarno Elonen
//// Permission to use, copy, modify, distribute and sell this software// and its documentation for any purpose is hereby granted without fee,// provided that the above copyright notice appear in all copies and// that both that copyright notice and this permission notice appear// in supporting documentation. The authors make no representations// about the suitability of this software for any purpose.// It is provided "as is" without express or implied warranty.//// Reference:// - Donato, G., Belongie, S. (2002):
// 'Approximation Methods for Thin Plate Spline Mappings and Principal Warps'
////---------------------------------------------------------
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
#include "Thin_Plate_Spline.h"
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
CThin_Plate_Spline::CThin_Plate_Spline(void)
{
}
//---------------------------------------------------------
CThin_Plate_Spline::~CThin_Plate_Spline(void)
{
Destroy();
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
bool CThin_Plate_Spline::Destroy(void)
{
m_Points.Clear();
m_V.Destroy();
return( true );
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
void CThin_Plate_Spline::Add_Point(double x, double y, double z)
{
m_Points.Add(x, y, z);
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
double CThin_Plate_Spline::_Get_hDistance(TSG_Point_3D A, TSG_Point_3D B)
{
A.x -= B.x;
A.y -= B.y;
return( sqrt(A.x*A.x + A.y*A.y) );
}
//---------------------------------------------------------
double CThin_Plate_Spline::_Get_Base_Funtion(double x)
{
return( x > 0.0 ? x*x * log(x) : 0.0 );
}
//---------------------------------------------------------
double CThin_Plate_Spline::_Get_Base_Funtion(TSG_Point_3D A, double x, double y)
{
x -= A.x;
y -= A.y;
x = sqrt(x*x + y*y);
return( x > 0.0 ? x*x * log(x) : 0.0 );
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
// Calculate Thin Plate Spline (TPS) weights from control points.//
bool CThin_Plate_Spline::Create(double Regularization, bool bSilent){
bool bResult = false;
int n;
//-----------------------------------------------------
// You We need at least 3 points to define a plane
if( (n = m_Points.Get_Count()) >= 3 ) {
int i, j;
double a, b;
TSG_Point_3D Point;
CSG_Matrix M;
//-------------------------------------------------
// Allocate the matrix and vector M .Create(n + 3, n + 3);
m_V .Create(n + 3);
//-------------------------------------------------
// Fill K (n x n, upper left of L) and calculate // mean edge length from control points // // K is symmetrical so we really have to // calculate only about half of the coefficients. for(i=0, a=0.0; i<n && (bSilent || SG_UI_Process_Set_Progress(i, n)); ++i ) { Point = m_Points[i];
for(j=i+1; j<n; ++j) { b = _Get_hDistance(Point, m_Points[j]);
a += b * 2.0; // same for upper & lower tri
M[i][j] = (M[j][i] = _Get_Base_Funtion(b));
} }
a /= (double)(n*n); //-------------------------------------------------
// Fill the rest of L for(i=0; i<n; ++i) { // diagonal: reqularization parameters (lambda * a^2) M[i][i] = Regularization * (a*a); // P (n x 3, upper right) M[i][n + 0] = 1.0; M[i][n + 1] = m_Points[i].x; M[i][n + 2] = m_Points[i].y; // P transposed (3 x n, bottom left) M[n + 0][i] = 1.0; M[n + 1][i] = m_Points[i].x; M[n + 2][i] = m_Points[i].y; }
//-------------------------------------------------
// O (3 x 3, lower right) for(i=n; i<n+3; ++i) {
for(j=n; j<n+3; ++j) {
M[i][j] = 0.0;
}
} //-------------------------------------------------
// Fill the right hand vector m_V for(i=0; i<n; ++i) {
m_V[i] = m_Points[i].z;
}
m_V[n + 0] = m_V[n + 1] = m_V[n + 2] = 0.0; //-------------------------------------------------
// Solve the linear system "inplace"
if( !bSilent )
SG_UI_Process_Set_Text(_TL("Solving Matrix"));
bResult = SG_Matrix_Solve(M, m_V, bSilent);
}
//-----------------------------------------------------
if( !bResult )
{
Destroy();
}
return( bResult );
}//---------------------------------------------------------
double CThin_Plate_Spline::Get_Value(double x, double y)
{
if( m_V.Get_N() > 0 )
{
int n = m_Points.Get_Count();
double z = m_V[n + 0] + m_V[n + 1] * x + m_V[n + 2] * y;
for(int i=0; i<n; i++)
{
z += m_V[i] * _Get_Base_Funtion(m_Points[i], x, y);
}
return( z );
}
return( 0.0 );
}
///////////////////////////////////////////////////////////
// //
// //
// //
///////////////////////////////////////////////////////////
//---------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -