📄 fmri_pls_analysis.m
字号:
function fmri_pls_analysis(varargin)
%
% USAGE:
% fmri_pls_analysis
% or fmri_pls_analysis(SessionProfiles,ContrastFile, ...
% num_perm,num_boot,grp_analysis_flg,output_file)
%
% Apply PLS on the fMRI data based on the session information saved in
% the "sessionFile". Assume session information, and st_datamat have
% been created.
%
%
% INPUT:
% SessionProfiles - a cell array, one element per group. Each element
% in the array is another cell array contains the names of
% session profiles for the group.
% ContrastFile - the contrast file to be used to generate the design matrix.
% Helmert matrix will be specified using the string of
% 'HELMERT'. If contrast is empty, use deviation from
% grand mean for the contrast.
% num_perm - number of permutations to be performed.
% num_boot - number of bootstrap resampling to be performed.
% grp_analysis_flg - flag indicates group analysis.
% output_file - (optional) the name of output file
%
%
% OUTPUT FILE:
% - file stores the information of the PLS result.
%
% NOTE:
% To create session information, use 'pls_input_session_info'.
% To create st_datamat, use 'fmri_gen_datamat', 'fmri_combine_coords',
% and 'fmri_gen_st_datamat'.
%
% Script needed: fmri_perm_test.m, fmri_deviation_perm_test.m
%
% -- Created July 2001 by Wilkin Chau, Rotman Research Institute
%
singledatamat = 0; % init singledatamat to false
if (nargin == 0),
[SessionProfiles,ContrastFile,num_perm,group_analysis] = options_query;
else
SessionProfiles = varargin{1};
ContrastFile = varargin{2};
num_perm = varargin{3};
num_boot = varargin{4};
Clim = varargin{5};
posthoc = varargin{6};
save_datamat = varargin{7};
group_analysis = varargin{8};
cond_selection = varargin{9};
behavname = varargin{10};
behavdata = varargin{11};
behavdata_lst = varargin{12};
bscan = varargin{13};
if (nargin > 13)
output_file = varargin{14};
for_batch = 1;
else
for_batch = 0;
end;
end;
session_files_timestamp = SessionProfiles;
datamat_files_timestamp = SessionProfiles;
change_timestamp = 0;
for i = 1:length(SessionProfiles)
for j = 1:length(SessionProfiles{i})
tmp = dir(SessionProfiles{i}{j});
session_files_timestamp{i}{j} = tmp.date;
load(SessionProfiles{i}{j},'session_info');
datamat_prefix = session_info.datamat_prefix;
if findstr('BfMRIsession.mat', SessionProfiles{i}{j})
datamat_file = [datamat_prefix,'_BfMRIdatamat.mat'];
else
datamat_file = [datamat_prefix,'_fMRIdatamat.mat'];
end
warning off;
load(datamat_file, 'singleprecision');
warning on;
if exist('singleprecision','var') & singleprecision
singledatamat = 1;
end
tmp = dir(datamat_file);
datamat_files_timestamp{i}{j} = tmp.date;
if datenum(session_files_timestamp{i}{j}) > datenum(datamat_files_timestamp{i}{j})
change_timestamp = 1;
end
end
end
if change_timestamp
msg1 = ['One or more datamat files are older than their session files, '];
msg2 = 'If you believe that the session files is just touched (e.g. due to copy) but not modified, you can click "Ignore All".';
msg3 = 'Otherwise, please click "Stop", and re-generate the datamat file.';
quest = questdlg({msg1 '' msg2 '' msg3 ''}, 'Choose','Proceed All','Stop','Stop');
if strcmp(quest,'Stop')
return;
end
end
% save results
%
if exist('output_file','var') & ~isempty(output_file)
resultFile = output_file;
else
fn = SessionProfiles{1}{1};
load(fn,'session_info');
datamat_prefix = session_info.datamat_prefix;
if findstr('BfMRIsession.mat', fn)
[result_file,result_path] = ...
uiputfile([datamat_prefix,'_BfMRIresult.mat'],'Saving PLS Result');
else
[result_file,result_path] = ...
uiputfile([datamat_prefix,'_fMRIresult.mat'],'Saving PLS Result');
end
if isequal(result_file,0) % Cancel was clicked
%% if findstr('BfMRIsession.mat', fn)
%% resultFile = 'BfMRIresult.mat';
%% else
%% resultFile = 'fMRIresult.mat';
%% end
%
% msg1 = ['WARNING: No file is saved.'];
% msgbox(msg1,'Uncompleted');
% resultFile = [];
% disp('ERROR: Result file is not saved.');
return;
else
resultFile = fullfile(result_path,result_file);
end;
end;
v7 = version;
if str2num(v7(1))<7
singleanalysis = 0;
else
singleanalysis = 1;
end
pc = computer;
if singleanalysis & ( strcmp(pc,'GLNXA64') | strcmp(pc,'GLNXI64') | strcmp(pc,'PCWIN64') )
quest = questdlg({'We detected that you are running MATLAB on a 64-bit system. According to MATLAB Bug Report ID 268001, we have to convert data to double precision for Intel based system.' '' 'Is this Intel 64-bit machine?' ''}, 'Choose','No','Yes','Don''t know','Don''t know');
if ~strcmp(quest,'No')
singleanalysis = 0;
end
end;
progress_hdl = ShowProgress('initialize');
if isempty(ContrastFile), % none: use deviation
ContrastMethod = 1;
elseif strcmp('HELMERT',upper(ContrastFile)) % use Helmert matrix
ContrastMethod = 2;
elseif strcmp('BEHAV',upper(ContrastFile)) % behav
ContrastMethod = 4;
elseif strcmp('MULTIBLOCK',upper(ContrastFile)) % multiblock
ContrastMethod = 5;
else
ContrastMethod = 3; % design with contrast file
end;
if ContrastMethod ~= 4 & ContrastMethod ~= 5
[st_datamat,st_coords,st_dims,num_conditions,st_evt_list, ...
st_win_size,st_voxel_size,st_origin,subj_group,behavdata,behavname, ...
subj_name, cond_name, num_behav_subj, ...
behavdata_lst, newdata_lst, num_subj_lst ] = ...
concat_st_datamat(singleanalysis,SessionProfiles,progress_hdl,ContrastMethod, ...
posthoc, cond_selection, group_analysis);
else
[st_datamat,st_coords,st_dims,num_conditions,st_evt_list, ...
st_win_size,st_voxel_size,st_origin,subj_group, ...
subj_name, cond_name, num_behav_subj, ...
newdata_lst, num_subj_lst ] = ...
concat_st_datamat2(singleanalysis,SessionProfiles,progress_hdl,ContrastMethod, ...
posthoc, behavdata, cond_selection);
end
if isempty(st_datamat),
return;
end;
if ~singleanalysis
st_datamat = double(st_datamat);
if ~isempty(newdata_lst)
for g = 1:length(newdata_lst)
newdata_lst{g} = double(newdata_lst{g});
end
end
end
if (group_analysis == 0)
subj_group = []; % for nongroup analysis
end;
% get the contrast
%
switch (ContrastMethod)
case {1}
USE_DEVIATION_PERM_TEST = 1;
isbehav = 0;
ContrastFile = 'NONE';
case {2}
USE_DEVIATION_PERM_TEST = 0;
isbehav = 0;
contrasts = rri_helmert_matrix(num_conditions);
case {3}
USE_DEVIATION_PERM_TEST = 0;
isbehav = 0;
if isnumeric(ContrastFile)
contrasts = ContrastFile;
else
contrasts = load(ContrastFile);
end
case {4}
USE_DEVIATION_PERM_TEST = 0;
isbehav = 1;
contrasts = behavdata;
case {5}
USE_DEVIATION_PERM_TEST = 0;
isbehav = 2;
contrasts = behavdata;
end;
create_ver = plsgui_vernum;
% start permutation PLS ...
%
perm_result = [];
boot_result = [];
if (USE_DEVIATION_PERM_TEST) % mean
if (num_boot > 0),
num_rep = length(st_evt_list) / num_conditions;
% boot_progress = rri_progress_ui('initialize');
if isempty(subj_group)
[min_subj_per_group,is_boot_samples,boot_samples,new_num_boot] ...
= rri_boot_check(num_rep, 1, num_boot, 1, ...
for_batch);
% boot_progress, for_batch);
else
[min_subj_per_group,is_boot_samples,boot_samples,new_num_boot] ...
= rri_boot_check(subj_group, num_conditions, num_boot, 1, ...
for_batch);
% boot_progress, for_batch);
end;
num_boot = new_num_boot;
end;
if (num_perm > 0) | (num_boot == 0),
[brainlv,s,designlv,b_scores,d_scores,perm_result,lv_evt_list] = ...
fmri_deviation_perm_test(st_datamat,num_conditions,st_evt_list, ...
num_perm,subj_group);
end;
if (num_boot > 0),
[brainlv2,s2,designlv2,b_scores2,d_scores2,boot_result,lv_evt_list2] = ...
fmri_deviation_boot_test(st_datamat,num_conditions,st_evt_list, ...
num_boot, subj_group, ...
min_subj_per_group,is_boot_samples,boot_samples,new_num_boot);
if num_perm == 0
brainlv = brainlv2;
s = s2;
designlv = designlv2;
b_scores = b_scores2;
d_scores = d_scores2;
lv_evt_list = lv_evt_list2;
perm_result = [];
end
end;
saved_info=['brainlv s designlv perm_result boot_result st_coords ', ...
'st_dims lv_evt_list st_win_size st_voxel_size st_origin ', ...
'SessionProfiles ContrastFile b_scores d_scores ', ...
'subj_group num_conditions cond_name cond_selection ', ...
'num_subj_lst subj_name session_files_timestamp ', ...
'datamat_files_timestamp create_ver'];
if save_datamat & ~isempty(brainlv)
first = 1;
last = 0;
% grp_datamat = [];
for g = 1:length(num_subj_lst)
last = last + num_conditions*num_subj_lst(g);
[tmp idx] = sort(st_evt_list(first:last));
tmp = st_datamat(first:last,:);
% grp_datamat = [grp_datamat; tmp(idx,:)];
grp_datamat{g} = tmp(idx,:);
first = last + 1;
end;
st_datamat = grp_datamat;
saved_info = [saved_info, ' st_datamat'];
end
elseif isbehav == 2 % Multiblock Analysis
ibehavdata_lst = behavdata_lst;
if (num_boot > 0),
% boot_progress = rri_progress_ui('initialize');
[min_subj_per_group,is_boot_samples,boot_samples,new_num_boot] ...
= rri_boot_check(num_subj_lst, num_conditions, num_boot, 0, ...
for_batch);
% boot_progress, for_batch);
num_boot = new_num_boot;
end;
if (num_perm > 0) | (num_boot == 0),
[brainlv,s,designlv,behavlv,brainscores,d_scores,behavscores,lvcorrs, ...
origpost,perm_result,behavdata,lv_evt_list,behavdata_lst,datamatcorrs_lst, ...
b_scores,behav_row_idx] = ...
fmri_perm_multiblock(st_datamat,contrasts,st_evt_list, ...
ibehavdata_lst, newdata_lst, num_subj_lst, ...
num_perm,num_conditions,num_behav_subj,posthoc,bscan);
end;
if (num_boot > 0),
if num_perm == 0, origpost = []; end;
[brainlv2,s2,designlv2,behavlv2,brainscores2,d_scores2,behavscores2,lvcorrs2, ...
boot_result,behavdata2,lv_evt_list2,behavdata_lst2,datamatcorrs_lst2,b_scores2,behav_row_idx2] = ...
fmri_boot_multiblock(st_datamat,contrasts,st_evt_list, ...
ibehavdata_lst, newdata_lst, num_subj_lst, ...
num_boot,num_conditions,num_behav_subj,Clim, ...
min_subj_per_group,is_boot_samples,boot_samples, ...
new_num_boot,bscan);
if num_perm == 0
brainlv = brainlv2;
s = s2;
designlv = designlv2;
behavlv = behavlv2;
brainscores = brainscores2;
d_scores = d_scores2;
behavscores = behavscores2;
lvcorrs = lvcorrs2;
behavdata = behavdata2;
lv_evt_list = lv_evt_list2;
behavdata_lst = behavdata_lst2;
datamatcorrs_lst = datamatcorrs_lst2;
b_scores = b_scores2;
behav_row_idx = behav_row_idx2;
perm_result = [];
end
end;
ismultiblock = 1;
saved_info=['brainlv s designlv behavlv brainscores b_scores d_scores behavscores lvcorrs ', ...
'origpost perm_result boot_result st_coords ', ...
'behavdata behavname datamatcorrs_lst ', ...
'num_conditions subj_name cond_name cond_selection ', ...
'st_dims lv_evt_list st_win_size st_voxel_size ', ...
'subj_group behavdata_lst num_subj_lst ', ...
'st_origin SessionProfiles ContrastFile ', ...
'session_files_timestamp datamat_files_timestamp ', ...
'create_ver ismultiblock bscan'];
if save_datamat & ~isempty(brainlv)
first = 1;
last = 0;
% grp_datamat = [];
for g = 1:length(num_subj_lst)
last = last + num_conditions*num_subj_lst(g);
[tmp idx] = sort(st_evt_list(first:last));
tmp = st_datamat(first:last,:);
% grp_datamat = [grp_datamat; tmp(idx,:)];
grp_datamat{g} = tmp(idx,:);
first = last + 1;
end;
st_datamat = grp_datamat;
saved_info = [saved_info, ' st_datamat'];
end
else % behav & no rotate
if (isbehav) % Behavior Analysis
if (num_boot > 0),
% boot_progress = rri_progress_ui('initialize');
[min_subj_per_group,is_boot_samples,boot_samples,new_num_boot] ...
= rri_boot_check(num_subj_lst, num_conditions, num_boot, 0, ...
for_batch);
% boot_progress, for_batch);
num_boot = new_num_boot;
end;
if (num_perm > 0) | (num_boot == 0),
[brainlv,s,behavlv,brainscores,behavscores,lvcorrs, ...
origpost,perm_result,behavdata,lv_evt_list,datamatcorrs_lst] = ...
fmri_perm_behav(st_datamat,contrasts,st_evt_list, ...
behavdata_lst, newdata_lst, num_subj_lst, ...
num_perm,num_conditions,num_behav_subj,posthoc);
end;
if (num_boot > 0),
if num_perm == 0, origpost = []; end;
[brainlv2,s2,behavlv2,brainscores2,behavscores2,lvcorrs2, ...
boot_result,behavdata,lv_evt_list2,datamatcorrs_lst2] = ...
fmri_boot_behav(st_datamat,contrasts,st_evt_list, ...
behavdata_lst, newdata_lst, num_subj_lst, ...
num_boot,num_conditions,num_behav_subj,Clim, ...
min_subj_per_group,is_boot_samples,boot_samples,new_num_boot);
if num_perm == 0
brainlv = brainlv2;
s = s2;
behavlv = behavlv2;
brainscores = brainscores2;
behavscores = behavscores2;
lvcorrs = lvcorrs2;
lv_evt_list = lv_evt_list2;
datamatcorrs_lst = datamatcorrs_lst2;
perm_result = [];
end
end;
saved_info=['brainlv s behavlv brainscores behavscores lvcorrs ', ...
'origpost perm_result boot_result st_coords ', ...
'behavdata behavname datamatcorrs_lst ', ...
'num_conditions subj_name cond_name cond_selection ', ...
'st_dims lv_evt_list st_win_size st_voxel_size ', ...
'subj_group behavdata_lst num_subj_lst ', ...
'st_origin SessionProfiles ContrastFile ', ...
'session_files_timestamp datamat_files_timestamp ', ...
'create_ver'];
if save_datamat & ~isempty(brainlv)
first = 1;
last = 0;
% grp_datamat = [];
for g = 1:length(num_subj_lst)
last = last + num_conditions*num_subj_lst(g);
[tmp idx] = sort(st_evt_list(first:last));
tmp = st_datamat(first:last,:);
% grp_datamat = [grp_datamat; tmp(idx,:)];
grp_datamat{g} = tmp(idx,:);
first = last + 1;
end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -