📄 rri_analysis_boot.m
字号:
elseif iscontrast
behav_p = stacked_contrastdata(reorder(:,p),:);
elseif isbehav
% behav_p = stacked_behavdata(reorder(:,p),:);
end
stacked_data = [];
for g=1:num_groups
k = num_cond_lst(g);
n = num_subj_lst(g);
span = sum(num_subj_lst(1:g-1)) * num_cond; % group length
if ismean
if isempty(single_cond_lst)
if num_groups == 1
% meanmat = rri_task_mean(data_p, n);
% data = meanmat - (ones(k,1)*mean(meanmat));
data = rri_task_mean(data_p,n)-ones(k,1)*mean(data_p);
else
% meanmat = rri_task_mean(data_p(1+span:n*k+span,:), n);
% data = meanmat - (ones(k,1)*mean(meanmat));
data = rri_task_mean(data_p(1+span:n*k+span,:),n)-ones(k,1)*mean(data_p(1+span:n*k+span,:));
end
elseif g==1
data = rri_task_mean1(data_p,num_subj_lst)-ones(num_groups,1)*mean(data_p);
end
elseif ishelmert
if num_groups == 1
data = rri_xcovy(behav_p, data_p);
else
data = rri_xcovy(behav_p(1+span:n*k+span,:), ...
data_p(1+span:n*k+span,:));
end
elseif iscontrast
if num_groups == 1
data = rri_xcovy(behav_p, data_p);
else
data = rri_xcovy(behav_p(1+span:n*k+span,:), ...
data_p(1+span:n*k+span,:));
end
elseif isbehav
if ~is_boot_samples
% the code below is mainly trying to find a proper
% reorder matrix
% init badbehav cell array to 0
% which is used to record the bad behav data caused by
% bad re-order. This var. is for disp only.
%
badbehav = zeros(num_cond, size(behavdata_lst{g},2));
% Check for upcoming NaN and re-sample if necessary.
% this only happened on behavior analysis, because the
% 'xcor' inside of 'corr_maps' contains a 'stdev', which
% is a divident. If it is 0, it will cause divided by 0
% problem.
% since this happend very rarely, so the speed will not
% be affected that much.
%
% For behavpls_boot, also need to account for multiple
% scans and behavs
%
for c=1:k % traverse all conditions in this group
stdmat(c,:) = std(stacked_behavdata(reorder((1+ ...
(n*(c-1))+span):(n*c+span), p), :));
end % scanloop
% now, check to see if any are zero
%
while sum(stdmat(:)==0)>0
countnewtotal = countnewtotal + 1;
% keep track of scan & behav that force a resample
%
badbehav(find(stdmat(:)==0)) = ...
badbehav(find(stdmat(:)==0)) + 1;
badbeh{g,countnewtotal} = badbehav; % save instead of disp
% num_boot is just something to be picked to prevent
% infinite loop
%
if countnewtotal > num_boot
% msgbox(['countnewtotal exceeds num_boot: ', ...
% num2str(countnewtotal)],'modal');
disp('Please check behavior data');
breakon=1;
break;
end
% reorder(:,p) = rri_mkboot_order(num_cond_lst(1), ...
% num_subj_lst, 1);
% boot_progress = rri_progress_ui('initialize');
% reorderp = rri_boot_order(num_subj_lst, num_cond_lst(1), 1, 0, boot_progress, ...
reorderp = rri_boot_order(num_subj_lst, num_cond_lst(1), 1, 0, ...
min_subj_per_group,is_boot_samples,boot_samples,1);
reorder(:,p) = reorderp;
for c=1:k % recalc stdmat
stdmat(c,:) = std(stacked_behavdata(reorder((1+ ...
(n*(c-1))+span):(n*c+span), p), :));
end % scanloop
end % while
end % if ~is_boot_samples
% now, we can use this proper reorder matrix
% to generate behav_p & data_p, and then
% to calculate datamatcoors
%
behav_p = stacked_behavdata(reorder(:,p),:);
data_p = stacked_datamat(reorder(:,p),:);
if num_groups == 1
data = rri_corr_maps(behav_p, data_p, n, k);
else
data = rri_corr_maps(behav_p(1+span:n*k+span,:), ...
data_p(1+span:n*k+span,:), n, k);
end
end % ismean,isbehav, ...
if isempty(single_cond_lst) | g==1
stacked_data = [stacked_data; data];
end
end % for num_groups
% Singular Value Decomposition
%
[r c] = size(stacked_data);
if r <= c
% transpose datamatcorrs to ensure SVD operation will be
% on smallest of RxC dimension
%
[pbrainlv, sboot, pbehavlv] = svd(stacked_data',0);
else
[pbehavlv, sboot, pbrainlv] = svd(stacked_data,0);
end
% rotate pbehavlv to align with the original behavlv
%
rotatemat = rri_bootprocrust(behavlv,pbehavlv);
% rescale the bootstrap vectors
%
pbrainlv = pbrainlv * sboot * rotatemat;
pbehavlv = pbehavlv * sboot * rotatemat;
if isbehav
[brainsctmp, behavsctmp, bcorr] = ...
rri_get_behavscores(data_p, behav_p, normalize(pbrainlv), ...
normalize(pbehavlv), num_cond_lst(1), num_subj_lst);
distrib(1:r1, 1:c1, p+1) = bcorr;
end
sal_sum = sal_sum + pbrainlv;
sal_sq = sal_sq + pbrainlv.^2;
dsal_sum = dsal_sum + pbehavlv;
dsal_sq = dsal_sq + pbehavlv.^2;
end % for num_boot
boot_result.num_boot = num_boot;
boot_result.bootsamp = reorder;
boot_result.num_LowVariability_behav_boots = num_LowVariability_behav_boots;
if ~isbehav
sal_sum2 = (sal_sum.^2) / (num_boot);
dsal_sum2 = (dsal_sum.^2) / (num_boot);
boot_result.original_sal = original_sal;
boot_result.brain_se = sqrt((sal_sq - sal_sum2)/(num_boot-1));
% check for zero standard errors - replace with ones
%
brain_zeros=find(boot_result.brain_se<=0);
boot_result.zero_brain_se = brain_zeros;
if ~isempty(brain_zeros);
boot_result.brain_se(brain_zeros)=1;
end
% now compare the original unstandardized saliances with the
% bootstrap salances
%
boot_result.compare = original_sal ./ boot_result.brain_se;
% for zero standard errors - replace bootstrap ratios with zero
% since the ratio makes no sense anyway
%
if ~isempty(brain_zeros);
boot_result.compare(brain_zeros)=0;
end
boot_result.orig_designlv = orig_behavlv;
boot_result.design_se = sqrt((dsal_sq - dsal_sum2)/(num_boot-1));
else
sal_sum2 = (sal_sum.^2) / (num_boot+1);
dsal_sum2 = (dsal_sum.^2) / (num_boot+1);
% compute standard errors - standard deviation of bootstrap sample
% since original sample is part of bootstrap, divide by number of
% bootstrap iterations rather than number of bootstraps minus 1
%
% add ceiling to calculations to prevent the following operations
% from producing negative/complex numbers
%
% brain_se = sqrt((ceil(sal_sq)-ceil(sal_sum2))/(num_boot));
% behav_se = sqrt((ceil(dsal_sq)-ceil(dsal_sum2))/(num_boot));
brain_se = sqrt(((sal_sq)-(sal_sum2))/(num_boot));
behav_se = sqrt(((dsal_sq)-(dsal_sum2))/(num_boot));
% check for zero standard errors - replace with ones
%
brain_zeros=find(brain_se<=0);
boot_result.zero_brain_se = brain_zeros;
if ~isempty(brain_zeros);
brain_se(brain_zeros)=1;
end
behav_zeros=find(behav_se<=0);
if ~isempty(behav_zeros);
behav_se(behav_zeros)=1;
end
compare = original_sal ./ brain_se;
compare_behavlv = orig_behavlv ./ behav_se;
% for zero standard errors - replace bootstrap ratios with zero
% since the ratio makes no sense anyway
%
if ~isempty(brain_zeros);
compare(brain_zeros)=0;
end
if ~isempty(behav_zeros);
compare_behavlv(behav_zeros)=0;
end
ul=Clim;
ll=100-Clim;
% e.g. 0.05 >> 0.025 for upper & lower tails, two-tailed
%
ClimNi = 0.5*(1-(Clim*0.01));
% loop to calculate upper and lower CI limits
%
for r=1:r1
for c=1:c1
ulcorr(r,c)=percentile(distrib(r,c,2:num_boot+1),ul);
llcorr(r,c)=percentile(distrib(r,c,2:num_boot+1),ll);
prop(r,c)=length( find(distrib(r,c,2:num_boot+1) ...
<= orig_corr(r,c)) ) / num_boot;
if prop(r,c)==1 |prop(r,c)==0 % can't calculate the cumulative_gaussian_inv
llcorr_adj(r,c)=NaN;
ulcorr_adj(r,c)=NaN;
else
% adjusted confidence intervals - in case the
% bootstrap samples are extremely skewed
% norm inverse to start to adjust conf int
%
ni=cumulative_gaussian_inv(prop(r,c));
% 1st part of recalc the lower conf interval,
% this evaluates to +1.96 for 95%CI
%
uli=(2*ni) + cumulative_gaussian_inv(1-ClimNi);
% 1st part of recalc the upper conf interval
% e.g -1.96 for 95%CI
%
lli=(2*ni) + cumulative_gaussian_inv(ClimNi);
ncdf_lli=cumulative_gaussian(lli)*100; % percentile for lower bounds
ncdf_uli=cumulative_gaussian(uli)*100; % percentile for upper bounds
% new percentile
%
llcorr_adj(r,c)=(percentile(distrib(r,c,2:num_boot+1), ...
ncdf_lli));
ulcorr_adj(r,c)=(percentile(distrib(r,c,2:num_boot+1), ...
ncdf_uli));
end % if
end % for c
end % for r
boot_result.orig_corr = orig_corr;
boot_result.ulcorr = ulcorr;
boot_result.llcorr = llcorr;
boot_result.ulcorr_adj = ulcorr_adj;
boot_result.llcorr_adj = llcorr_adj;
boot_result.prop = prop;
boot_result.distrib = distrib;
boot_result.orig_brainlv = original_sal;
boot_result.brain_se = brain_se;
boot_result.compare = compare;
boot_result.compare_behavlv = compare_behavlv;
boot_result.badbeh = badbeh;
boot_result.countnewtotal = countnewtotal;
end % enf if ~isbehav
return; % rri_analysis_boot
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -