⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 complex.pm

📁 MSYS在windows下模拟了一个类unix的终端
💻 PM
📖 第 1 页 / 共 3 页
字号:
## z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))#sub root {	my ($z, $n) = @_;	_rootbad($n) if ($n < 1 or int($n) != $n);	my ($r, $t) = ref $z ?	    @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);	my @root;	my $k;	my $theta_inc = pit2 / $n;	my $rho = $r ** (1/$n);	my $theta;	my $cartesian = ref $z && $z->{c_dirty} == 0;	for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) {	    my $w = cplxe($rho, $theta);	    # Yes, $cartesian is loop invariant.	    push @root, $cartesian ? cplx(@{$w->cartesian}) : $w;	}	return @root;}## Re## Return or set Re(z).#sub Re {	my ($z, $Re) = @_;	return $z unless ref $z;	if (defined $Re) {	    $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ];	    $z->{c_dirty} = 0;	    $z->{p_dirty} = 1;	} else {	    return ${$z->cartesian}[0];	}}## Im## Return or set Im(z).#sub Im {	my ($z, $Im) = @_;	return 0 unless ref $z;	if (defined $Im) {	    $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ];	    $z->{c_dirty} = 0;	    $z->{p_dirty} = 1;	} else {	    return ${$z->cartesian}[1];	}}## rho## Return or set rho(w).#sub rho {    Math::Complex::abs(@_);}## theta## Return or set theta(w).#sub theta {    Math::Complex::arg(@_);}## (exp)## Computes exp(z).#sub exp {	my ($z) = @_;	my ($x, $y) = @{$z->cartesian};	return (ref $z)->emake(CORE::exp($x), $y);}## _logofzero## Die on logarithm of zero.#sub _logofzero {    my $mess = "$_[0]: Logarithm of zero.\n";    if (defined $_[1]) {	$mess .= "(Because in the definition of $_[0], the argument ";	$mess .= "$_[1] " unless ($_[1] eq '0');	$mess .= "is 0)\n";    }    my @up = caller(1);    $mess .= "Died at $up[1] line $up[2].\n";    die $mess;}## (log)## Compute log(z).#sub log {	my ($z) = @_;	unless (ref $z) {	    _logofzero("log") if $z == 0;	    return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);	}	my ($r, $t) = @{$z->polar};	_logofzero("log") if $r == 0;	if    ($t >   pi()) { $t -= pit2 }	elsif ($t <= -pi()) { $t += pit2 }	return (ref $z)->make(CORE::log($r), $t);}## ln## Alias for log().#sub ln { Math::Complex::log(@_) }## log10## Compute log10(z).#sub log10 {	return Math::Complex::log($_[0]) * uplog10;}## logn## Compute logn(z,n) = log(z) / log(n)#sub logn {	my ($z, $n) = @_;	$z = cplx($z, 0) unless ref $z;	my $logn = $LOGN{$n};	$logn = $LOGN{$n} = CORE::log($n) unless defined $logn;	# Cache log(n)	return &log($z) / $logn;}## (cos)## Compute cos(z) = (exp(iz) + exp(-iz))/2.#sub cos {	my ($z) = @_;	return CORE::cos($z) unless ref $z;	my ($x, $y) = @{$z->cartesian};	my $ey = CORE::exp($y);	my $sx = CORE::sin($x);	my $cx = CORE::cos($x);	my $ey_1 = $ey ? 1 / $ey : $Inf;	return (ref $z)->make($cx * ($ey + $ey_1)/2,			      $sx * ($ey_1 - $ey)/2);}## (sin)## Compute sin(z) = (exp(iz) - exp(-iz))/2.#sub sin {	my ($z) = @_;	return CORE::sin($z) unless ref $z;	my ($x, $y) = @{$z->cartesian};	my $ey = CORE::exp($y);	my $sx = CORE::sin($x);	my $cx = CORE::cos($x);	my $ey_1 = $ey ? 1 / $ey : $Inf;	return (ref $z)->make($sx * ($ey + $ey_1)/2,			      $cx * ($ey - $ey_1)/2);}## tan## Compute tan(z) = sin(z) / cos(z).#sub tan {	my ($z) = @_;	my $cz = &cos($z);	_divbyzero "tan($z)", "cos($z)" if $cz == 0;	return &sin($z) / $cz;}## sec## Computes the secant sec(z) = 1 / cos(z).#sub sec {	my ($z) = @_;	my $cz = &cos($z);	_divbyzero "sec($z)", "cos($z)" if ($cz == 0);	return 1 / $cz;}## csc## Computes the cosecant csc(z) = 1 / sin(z).#sub csc {	my ($z) = @_;	my $sz = &sin($z);	_divbyzero "csc($z)", "sin($z)" if ($sz == 0);	return 1 / $sz;}## cosec## Alias for csc().#sub cosec { Math::Complex::csc(@_) }## cot## Computes cot(z) = cos(z) / sin(z).#sub cot {	my ($z) = @_;	my $sz = &sin($z);	_divbyzero "cot($z)", "sin($z)" if ($sz == 0);	return &cos($z) / $sz;}## cotan## Alias for cot().#sub cotan { Math::Complex::cot(@_) }## acos## Computes the arc cosine acos(z) = -i log(z + sqrt(z*z-1)).#sub acos {	my $z = $_[0];	return CORE::atan2(CORE::sqrt(1-$z*$z), $z)	    if (! ref $z) && CORE::abs($z) <= 1;	$z = cplx($z, 0) unless ref $z;	my ($x, $y) = @{$z->cartesian};	return 0 if $x == 1 && $y == 0;	my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);	my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);	my $alpha = ($t1 + $t2)/2;	my $beta  = ($t1 - $t2)/2;	$alpha = 1 if $alpha < 1;	if    ($beta >  1) { $beta =  1 }	elsif ($beta < -1) { $beta = -1 }	my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);	my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));	$v = -$v if $y > 0 || ($y == 0 && $x < -1);	return (ref $z)->make($u, $v);}## asin## Computes the arc sine asin(z) = -i log(iz + sqrt(1-z*z)).#sub asin {	my $z = $_[0];	return CORE::atan2($z, CORE::sqrt(1-$z*$z))	    if (! ref $z) && CORE::abs($z) <= 1;	$z = cplx($z, 0) unless ref $z;	my ($x, $y) = @{$z->cartesian};	return 0 if $x == 0 && $y == 0;	my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);	my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);	my $alpha = ($t1 + $t2)/2;	my $beta  = ($t1 - $t2)/2;	$alpha = 1 if $alpha < 1;	if    ($beta >  1) { $beta =  1 }	elsif ($beta < -1) { $beta = -1 }	my $u =  CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));	my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));	$v = -$v if $y > 0 || ($y == 0 && $x < -1);	return (ref $z)->make($u, $v);}## atan## Computes the arc tangent atan(z) = i/2 log((i+z) / (i-z)).#sub atan {	my ($z) = @_;	return CORE::atan2($z, 1) unless ref $z;	my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);	return 0 if $x == 0 && $y == 0;	_divbyzero "atan(i)"  if ( $z == i);	_logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...	my $log = &log((i + $z) / (i - $z));	return ip2 * $log;}## asec## Computes the arc secant asec(z) = acos(1 / z).#sub asec {	my ($z) = @_;	_divbyzero "asec($z)", $z if ($z == 0);	return acos(1 / $z);}## acsc## Computes the arc cosecant acsc(z) = asin(1 / z).#sub acsc {	my ($z) = @_;	_divbyzero "acsc($z)", $z if ($z == 0);	return asin(1 / $z);}## acosec## Alias for acsc().#sub acosec { Math::Complex::acsc(@_) }## acot## Computes the arc cotangent acot(z) = atan(1 / z)#sub acot {	my ($z) = @_;	_divbyzero "acot(0)"  if $z == 0;	return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)	    unless ref $z;	_divbyzero "acot(i)"  if ($z - i == 0);	_logofzero "acot(-i)" if ($z + i == 0);	return atan(1 / $z);}## acotan## Alias for acot().#sub acotan { Math::Complex::acot(@_) }## cosh## Computes the hyperbolic cosine cosh(z) = (exp(z) + exp(-z))/2.#sub cosh {	my ($z) = @_;	my $ex;	unless (ref $z) {	    $ex = CORE::exp($z);	    return $ex ? ($ex + 1/$ex)/2 : $Inf;	}	my ($x, $y) = @{$z->cartesian};	$ex = CORE::exp($x);	my $ex_1 = $ex ? 1 / $ex : $Inf;	return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,			      CORE::sin($y) * ($ex - $ex_1)/2);}## sinh## Computes the hyperbolic sine sinh(z) = (exp(z) - exp(-z))/2.#sub sinh {	my ($z) = @_;	my $ex;	unless (ref $z) {	    return 0 if $z == 0;	    $ex = CORE::exp($z);	    return $ex ? ($ex - 1/$ex)/2 : "-$Inf";	}	my ($x, $y) = @{$z->cartesian};	my $cy = CORE::cos($y);	my $sy = CORE::sin($y);	$ex = CORE::exp($x);	my $ex_1 = $ex ? 1 / $ex : $Inf;	return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,			      CORE::sin($y) * ($ex + $ex_1)/2);}## tanh## Computes the hyperbolic tangent tanh(z) = sinh(z) / cosh(z).#sub tanh {	my ($z) = @_;	my $cz = cosh($z);	_divbyzero "tanh($z)", "cosh($z)" if ($cz == 0);	return sinh($z) / $cz;}## sech## Computes the hyperbolic secant sech(z) = 1 / cosh(z).#sub sech {	my ($z) = @_;	my $cz = cosh($z);	_divbyzero "sech($z)", "cosh($z)" if ($cz == 0);	return 1 / $cz;}## csch## Computes the hyperbolic cosecant csch(z) = 1 / sinh(z).#sub csch {	my ($z) = @_;	my $sz = sinh($z);	_divbyzero "csch($z)", "sinh($z)" if ($sz == 0);	return 1 / $sz;}## cosech## Alias for csch().#sub cosech { Math::Complex::csch(@_) }## coth## Computes the hyperbolic cotangent coth(z) = cosh(z) / sinh(z).#sub coth {	my ($z) = @_;	my $sz = sinh($z);	_divbyzero "coth($z)", "sinh($z)" if $sz == 0;	return cosh($z) / $sz;}## cotanh## Alias for coth().#sub cotanh { Math::Complex::coth(@_) }## acosh## Computes the arc hyperbolic cosine acosh(z) = log(z + sqrt(z*z-1)).#sub acosh {	my ($z) = @_;	unless (ref $z) {	    $z = cplx($z, 0);	}	my ($re, $im) = @{$z->cartesian};	if ($im == 0) {	    return CORE::log($re + CORE::sqrt($re*$re - 1))		if $re >= 1;	    return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))		if CORE::abs($re) < 1;	}	my $t = &sqrt($z * $z - 1) + $z;	# Try Taylor if looking bad (this usually means that	# $z was large negative, therefore the sqrt is really	# close to abs(z), summing that with z...)	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)	    if $t == 0;	my $u = &log($t);	$u->Im(-$u->Im) if $re < 0 && $im == 0;	return $re < 0 ? -$u : $u;}## asinh## Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))#sub asinh {	my ($z) = @_;	unless (ref $z) {	    my $t = $z + CORE::sqrt($z*$z + 1);	    return CORE::log($t) if $t;	}	my $t = &sqrt($z * $z + 1) + $z;	# Try Taylor if looking bad (this usually means that	# $z was large negative, therefore the sqrt is really	# close to abs(z), summing that with z...)	$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)	    if $t == 0;	return &log($t);}## atanh## Computes the arc hyperbolic tangent atanh(z) = 1/2 log((1+z) / (1-z)).#sub atanh {	my ($z) = @_;	unless (ref $z) {	    return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;	    $z = cplx($z, 0);	}	_divbyzero 'atanh(1)',  "1 - $z" if (1 - $z == 0);	_logofzero 'atanh(-1)'           if (1 + $z == 0);	return 0.5 * &log((1 + $z) / (1 - $z));}## asech## Computes the hyperbolic arc secant asech(z) = acosh(1 / z).#sub asech {	my ($z) = @_;	_divbyzero 'asech(0)', "$z" if ($z == 0);	return acosh(1 / $z);}## acsch## Computes the hyperbolic arc cosecant acsch(z) = asinh(1 / z).#sub acsch {	my ($z) = @_;	_divbyzero 'acsch(0)', $z if ($z == 0);	return asinh(1 / $z);}## acosech## Alias for acosh().#sub acosech { Math::Complex::acsch(@_) }## acoth## Computes the arc hyperbolic cotangent acoth(z) = 1/2 log((1+z) / (z-1)).#sub acoth {	my ($z) = @_;	_divbyzero 'acoth(0)'            if ($z == 0);	unless (ref $z) {	    return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;	    $z = cplx($z, 0);	}	_divbyzero 'acoth(1)',  "$z - 1" if ($z - 1 == 0);	_logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);	return &log((1 + $z) / ($z - 1)) / 2;}## acotanh## Alias for acot().#sub acotanh { Math::Complex::acoth(@_) }## (atan2)## Compute atan(z1/z2).#sub atan2 {	my ($z1, $z2, $inverted) = @_;	my ($re1, $im1, $re2, $im2);	if ($inverted) {	    ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);	    ($re2, $im2) = @{$z1->cartesian};	} else {	    ($re1, $im1) = @{$z1->cartesian};	    ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);	}	if ($im2 == 0) {	    return CORE::atan2($re1, $re2) if $im1 == 0;	    return ($im1<=>0) * pip2 if $re2 == 0;	}	my $w = atan($z1/$z2);	my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0);	$u += pi   if $re2 < 0;	$u -= pit2 if $u > pi;	return cplx($u, $v);}## display_format# ->display_format## Set (get if no argument) the display format for all complex numbers that# don't happen to have overridden it via ->display_format## When called as an object method, this actually sets the display format for# the current object.## Valid object formats are 'c' and 'p' for cartesian and polar. The first# letter is used actually, so the type can be fully spelled out for clarity.#sub display_format {	my $self  = shift;	my %display_format = %DISPLAY_FORMAT;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -