📄 bigfloat.pm
字号:
package Math::BigFloat;use Math::BigInt;use Exporter; # just for use to be happy@ISA = (Exporter);$VERSION = '0.02';use overload'+' => sub {new Math::BigFloat &fadd},'-' => sub {new Math::BigFloat $_[2]? fsub($_[1],${$_[0]}) : fsub(${$_[0]},$_[1])},'<=>' => sub {$_[2]? fcmp($_[1],${$_[0]}) : fcmp(${$_[0]},$_[1])},'cmp' => sub {$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},'*' => sub {new Math::BigFloat &fmul},'/' => sub {new Math::BigFloat $_[2]? scalar fdiv($_[1],${$_[0]}) : scalar fdiv(${$_[0]},$_[1])},'%' => sub {new Math::BigFloat $_[2]? scalar fmod($_[1],${$_[0]}) : scalar fmod(${$_[0]},$_[1])},'neg' => sub {new Math::BigFloat &fneg},'abs' => sub {new Math::BigFloat &fabs},qw("" stringify0+ numify) # Order of arguments unsignificant;sub new { my ($class) = shift; my ($foo) = fnorm(shift); bless \$foo, $class;}sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead # comparing to direct compilation based on # stringifysub stringify { my $n = ${$_[0]}; my $minus = ($n =~ s/^([+-])// && $1 eq '-'); $n =~ s/E//; $n =~ s/([-+]\d+)$//; my $e = $1; my $ln = length($n); if ( defined $e ) { if ($e > 0) { $n .= "0" x $e . '.'; } elsif (abs($e) < $ln) { substr($n, $ln + $e, 0) = '.'; } else { $n = '.' . ("0" x (abs($e) - $ln)) . $n; } } $n = "-$n" if $minus; # 1 while $n =~ s/(.*\d)(\d\d\d)/$1,$2/; return $n;}$div_scale = 40;# Rounding modes one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.$rnd_mode = 'even';sub fadd; sub fsub; sub fmul; sub fdiv;sub fneg; sub fabs; sub fcmp;sub fround; sub ffround;sub fnorm; sub fsqrt;# Convert a number to canonical string form.# Takes something that looks like a number and converts it to# the form /^[+-]\d+E[+-]\d+$/.sub fnorm { #(string) return fnum_str local($_) = @_; s/\s+//g; # strip white space no warnings; # $4 and $5 below might legitimately be undefined if (/^([+-]?)(\d*)(\.(\d*))?([Ee]([+-]?\d+))?$/ && "$2$4" ne '') { &norm(($1 ? "$1$2$4" : "+$2$4"),(($4 ne '') ? $6-length($4) : $6)); } else { 'NaN'; }}# normalize number -- for internal usesub norm { #(mantissa, exponent) return fnum_str local($_, $exp) = @_; $exp = 0 unless defined $exp; if ($_ eq 'NaN') { 'NaN'; } else { s/^([+-])0+/$1/; # strip leading zeros if (length($_) == 1) { '+0E+0'; } else { $exp += length($1) if (s/(0+)$//); # strip trailing zeros sprintf("%sE%+ld", $_, $exp); } }}# negationsub fneg { #(fnum_str) return fnum_str local($_) = fnorm($_[$[]); vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0E+0'; # flip sign s/^H/N/; $_;}# absolute valuesub fabs { #(fnum_str) return fnum_str local($_) = fnorm($_[$[]); s/^-/+/; # mash sign $_;}# multiplicationsub fmul { #(fnum_str, fnum_str) return fnum_str local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1])); if ($x eq 'NaN' || $y eq 'NaN') { 'NaN'; } else { local($xm,$xe) = split('E',$x); local($ym,$ye) = split('E',$y); &norm(Math::BigInt::bmul($xm,$ym),$xe+$ye); }}# additionsub fadd { #(fnum_str, fnum_str) return fnum_str local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1])); if ($x eq 'NaN' || $y eq 'NaN') { 'NaN'; } else { local($xm,$xe) = split('E',$x); local($ym,$ye) = split('E',$y); ($xm,$xe,$ym,$ye) = ($ym,$ye,$xm,$xe) if ($xe < $ye); &norm(Math::BigInt::badd($ym,$xm.('0' x ($xe-$ye))),$ye); }}# subtractionsub fsub { #(fnum_str, fnum_str) return fnum_str fadd($_[$[],fneg($_[$[+1]));}# division# args are dividend, divisor, scale (optional)# result has at most max(scale, length(dividend), length(divisor)) digitssub fdiv #(fnum_str, fnum_str[,scale]) return fnum_str{ local($x,$y,$scale) = (fnorm($_[$[]),fnorm($_[$[+1]),$_[$[+2]); if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') { 'NaN'; } else { local($xm,$xe) = split('E',$x); local($ym,$ye) = split('E',$y); $scale = $div_scale if (!$scale); $scale = length($xm)-1 if (length($xm)-1 > $scale); $scale = length($ym)-1 if (length($ym)-1 > $scale); $scale = $scale + length($ym) - length($xm); &norm(&round(Math::BigInt::bdiv($xm.('0' x $scale),$ym), Math::BigInt::babs($ym)), $xe-$ye-$scale); }}# modular division# args are dividend, divisorsub fmod #(fnum_str, fnum_str) return fnum_str{ local($x,$y) = (fnorm($_[$[]),fnorm($_[$[+1])); if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0E+0') { 'NaN'; } else { local($xm,$xe) = split('E',$x); local($ym,$ye) = split('E',$y); if ( $xe < $ye ) { $ym .= ('0' x ($ye-$xe)); } else { $xm .= ('0' x ($xe-$ye)); } &norm(Math::BigInt::bmod($xm,$ym)); }}# round int $q based on fraction $r/$base using $rnd_modesub round { #(int_str, int_str, int_str) return int_str local($q,$r,$base) = @_; if ($q eq 'NaN' || $r eq 'NaN') { 'NaN'; } elsif ($rnd_mode eq 'trunc') { $q; # just truncate } else { local($cmp) = Math::BigInt::bcmp(Math::BigInt::bmul($r,'+2'),$base); if ( $cmp < 0 || ($cmp == 0 && ( ($rnd_mode eq 'zero' ) || ($rnd_mode eq '-inf' && (substr($q,$[,1) eq '+')) || ($rnd_mode eq '+inf' && (substr($q,$[,1) eq '-')) || ($rnd_mode eq 'even' && $q =~ /[24680]$/ ) || ($rnd_mode eq 'odd' && $q =~ /[13579]$/ ) ) ) ) { $q; # round down } else { Math::BigInt::badd($q, ((substr($q,$[,1) eq '-') ? '-1' : '+1')); # round up } }}# round the mantissa of $x to $scale digitssub fround { #(fnum_str, scale) return fnum_str local($x,$scale) = (fnorm($_[$[]),$_[$[+1]); if ($x eq 'NaN' || $scale <= 0) { $x; } else { local($xm,$xe) = split('E',$x); if (length($xm)-1 <= $scale) { $x; } else { &norm(&round(substr($xm,$[,$scale+1), "+0".substr($xm,$[+$scale+1),"+1"."0" x length(substr($xm,$[+$scale+1))), $xe+length($xm)-$scale-1); } }}# round $x at the 10 to the $scale digit placesub ffround { #(fnum_str, scale) return fnum_str local($x,$scale) = (fnorm($_[$[]),$_[$[+1]); if ($x eq 'NaN') { 'NaN'; } else { local($xm,$xe) = split('E',$x); if ($xe >= $scale) { $x; } else { $xe = length($xm)+$xe-$scale; if ($xe < 1) { '+0E+0'; } elsif ($xe == 1) { # The first substr preserves the sign, passing a non- # normalized "-0" to &round when rounding -0.006 (for # example), purely so &round won't lose the sign. &norm(&round(substr($xm,$[,1).'0', "+0".substr($xm,$[+1), "+1"."0" x length(substr($xm,$[+1))), $scale); } else { &norm(&round(substr($xm,$[,$xe), "+0".substr($xm,$[+$xe), "+1"."0" x length(substr($xm,$[+$xe))), $scale); } } }}# compare 2 values returns one of undef, <0, =0, >0# returns undef if either or both input value are not numberssub fcmp #(fnum_str, fnum_str) return cond_code{ local($x, $y) = (fnorm($_[$[]),fnorm($_[$[+1])); if ($x eq "NaN" || $y eq "NaN") { undef; } else { local($xm,$xe,$ym,$ye) = split('E', $x."E$y"); if ($xm eq '+0' || $ym eq '+0') { return $xm <=> $ym; } if ( $xe < $ye ) # adjust the exponents to be equal { $ym .= '0' x ($ye - $xe); $ye = $xe; } elsif ( $ye < $xe ) # same here { $xm .= '0' x ($xe - $ye); $xe = $ye; } return Math::BigInt::cmp($xm,$ym); }}# square root by Newtons method.sub fsqrt { #(fnum_str[, scale]) return fnum_str local($x, $scale) = (fnorm($_[$[]), $_[$[+1]); if ($x eq 'NaN' || $x =~ /^-/) { 'NaN'; } elsif ($x eq '+0E+0') { '+0E+0'; } else { local($xm, $xe) = split('E',$x); $scale = $div_scale if (!$scale); $scale = length($xm)-1 if ($scale < length($xm)-1); local($gs, $guess) = (1, sprintf("1E%+d", (length($xm)+$xe-1)/2)); while ($gs < 2*$scale) { $guess = fmul(fadd($guess,fdiv($x,$guess,$gs*2)),".5"); $gs *= 2; } new Math::BigFloat &fround($guess, $scale); }}1;__END__=head1 NAMEMath::BigFloat - Arbitrary length float math package=head1 SYNOPSIS use Math::BigFloat; $f = Math::BigFloat->new($string); $f->fadd(NSTR) return NSTR addition $f->fsub(NSTR) return NSTR subtraction $f->fmul(NSTR) return NSTR multiplication $f->fdiv(NSTR[,SCALE]) returns NSTR division to SCALE places $f->fmod(NSTR) returns NSTR modular remainder $f->fneg() return NSTR negation $f->fabs() return NSTR absolute value $f->fcmp(NSTR) return CODE compare undef,<0,=0,>0 $f->fround(SCALE) return NSTR round to SCALE digits $f->ffround(SCALE) return NSTR round at SCALEth place $f->fnorm() return (NSTR) normalize $f->fsqrt([SCALE]) return NSTR sqrt to SCALE places=head1 DESCRIPTIONAll basic math operations are overloaded if you declare your bigfloats as $float = new Math::BigFloat "2.123123123123123123123123123123123";=over 2=item number formatcanonical strings have the form /[+-]\d+E[+-]\d+/ . Input values canhave embedded whitespace.=item Error returns 'NaN'An input parameter was "Not a Number" or divide by zero or sqrt ofnegative number.=item Division is computed toC<max($Math::BigFloat::div_scale,length(dividend)+length(divisor))>digits by default.Also used for default sqrt scale.=item Rounding is performedaccording to the value ofC<$Math::BigFloat::rnd_mode>: trunc truncate the value zero round towards 0 +inf round towards +infinity (round up) -inf round towards -infinity (round down) even round to the nearest, .5 to the even digit odd round to the nearest, .5 to the odd digitThe default is C<even> rounding.=back=head1 BUGSThe current version of this module is a preliminary version of thereal thing that is currently (as of perl5.002) under development.The printf subroutine does not use the value ofC<$Math::BigFloat::rnd_mode> when rounding values for printing.Consequently, the way to print rounded values isto specify the number of digits both as anargument to C<ffround> and in the C<%f> printf string,as follows: printf "%.3f\n", $bigfloat->ffround(-3);=head1 AUTHORMark BiggarPatches by John Peacock Apr 2001=cut
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -